期刊文献+

基于灰色小波核偏最小二乘的传感器网络数据预测融合研究 被引量:2

Data prediction and fusion in a sensor network based on grey wavelet kernel partial least squares
下载PDF
导出
摘要 针对如何降低传感器网络中采集的非平稳、非线性信号的数据传输量,提出了一种基于灰色Morlet小波核偏最小二乘(GMWKPLS)的预测融合模型。该模型把灰色模型预测的思想融入到核偏最小二乘(KPLS)中,采用构造的Morlet小波核函数进行数据变换,将输入映射到高维非线性的特征空间,在特征空间中,利用线性偏最小二乘方法构造预测融合模型。通过对齿轮箱断齿工况升速过程中的振动信号进行分析,结果表明,该模型使用滑动窗方法不断更新建模数据进行动态预测,预测精度高,可大大降低数据传输量,获得显著的节能收益。通过与灰色RBF核偏最小二乘(GRBFKPLS)和RBF核偏最小二乘(RBFKPLS)预测模型对比,GMWKPLS性能最佳,预测误差范围在±0.15%以内。 In order to reduce the amount of data of non-stationary and nonlinear signals collected in a sensor network,a grey Morlet wavelet kernel partial least squares(GMWKPLS) model was proposed.In this model,grey prediction theory was firstly introduced into kernel partial least squares(KPLS).Then,the input-output data were mapped to a nonlinear higher dimensional feature space with Morelt kernel transformation.Finally,a prediction and fusion model was constructed with linear partial least squares.Moreover,the moving window method was utilized to update samples continuously in this dynamical prediction model.The model was validated using vibration signals of gear tooth breakage with rising speed.The results showed that the model can execute dynamic multi-step prediction,and has higher precision prediction;thus,it can obviously reduce the data amount in a sensor network and save energy;compared with grey RBF kernel partial least squares(GRBFKPLS) and RBF kernel partial least squares(RBFKPLS),GMWKPLS is best in prediction performance,and the prediction errors are with in ±0.15%.
机构地区 军械工程学院 [ [
出处 《振动与冲击》 EI CSCD 北大核心 2011年第4期144-149,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(60672143)
关键词 灰色 Morlet核 传感器网络 数据融合 预测 grey morlet sensor network data fusion prediction
  • 相关文献

参考文献10

  • 1Nakanmra E F, Loureiro A F, Frel7 A C. Information fusion for wireles wensor networks: methods, models, and classifications [ J ]. ACM Computing Surveys, 2007, 39 (3) : 1 -55.
  • 2Sharaf M A, Beaver J, Labrinidis A, et al. TiNA: a scheme for temporal coherency aware in network aggregation [ C ]// Proceedings of the 3rd ACM International Workshop on Data Engineering for Wireless and Mobile Access. San Diego: ACM, 2003 : 69 - 76.
  • 3Santini S, Romer K. An adaptive strategy for quality - baseddata reduction in wireless sensor networks [ C ]// Proceedings of the 3rd International Conference on Networked Sensing Systems. TRF, Chicago, IL: ACM, 2006:29 - 36.
  • 4Le Borgne Y A, Santini S, Bontempi G. Adaptive model selection for time series prediction in wireless sensor networks [J]. Signal Processing, 2007, 87(12): 3010-3020.
  • 5回春立,崔莉.无线传感器网络中基于预测的时域数据融合技术[J].计算机工程与应用,2007,43(21):121-125. 被引量:16
  • 6孟洁,王惠文,黄海军,苏建宁.基于核函数变换的PLS回归的非线性结构分析[J].系统工程,2004,22(10):93-97. 被引量:10
  • 7Luo Y X, Zhang L T, Cai A H, et al. Grey GM(1,1) model with function -transfer method and application to energy consuming prediction [ J ]. Kybernetes, 2004, 33 ( 2 ) : 322 - 330.
  • 8Zhang Li, Zhou Wei - da, Jiao Li-cheng. Wavelet support vector machine [ J]. IEEE Transactions on systems, man, and cybernetics, 2004, 34( 1 ): 34-39.
  • 9李军,董海鹰.基于小波核偏最小二乘回归方法的混沌系统建模研究[J].物理学报,2008,57(8):4756-4765. 被引量:14
  • 10Raybunatban V, Schurgers C, Park S, et al. Energy -aware wireless microsensor networks [ J]. IEEE Signal Processing Magazine,2002,19(2) : 40 -50.

二级参考文献54

共引文献36

同被引文献21

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部