期刊文献+

一种构造量子稳定子码的新方法

A Novel Construction of Quantum Stabilizer Codes
下载PDF
导出
摘要 量子编码是纠正或防止量子错误的有效手段,是量子计算和量子通信实用化的基础。利用循环差集(cyclic difference set)的特性,提出了一种具有循环特性的量子稳定子构造方法。通过该方法能构造出著名的[5,1,3]量子码的量子校验矩阵。通过实例分析,如[5,1]、[13,7]量子码,发现通过该方法构造的稳定子码,不仅可以编任何长度的逻辑量子信息,而且编码后的量子长度具有量子Hamming界的最小值,除此之外,该量子码具有高的码率。 Quantum error correcting code is an efficient tool to correct and prevent quantum error. It is the basic for quantum computation and quantum communications. Taking advantage of the cyclic difference set,we present a novel approach to construct quantum stabilizer codes in this paper. It' s not difficult to construct the well-known [ 5,1,3 ] quantum code by our approach. By analyzing the property of the quantum code constructed by this method, such as [ 5,1 ], as well as [ 13,7 ], we find all the constructed codes are the quantum Single-bound codes, and we can use this method to encode different length information. Besides, the code rate is high.
出处 《南京邮电大学学报(自然科学版)》 2011年第2期14-18,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
关键词 循环差集 量子纠错码 量子稳定子码 量子校验矩阵 cyclic difference set quantum error-correcting code quantum stabilizer codes Quantum parity check matrix
  • 相关文献

参考文献14

  • 1SHOR P W. Scheme for Reducing Decoherence in Quantum Computer Memory[ J]. Phys Rev A, 1995,52:2483 - 2496.
  • 2STEANE A M. Error Correcting Codes in Quantum Theory[ J]. Phys Rev Letters, 1996,77 (5) :793 - 797.
  • 3CALDERBANK A R,SHOR P W. Good Quantum Error-Correction Codes Exist[ J]. Phys Rev A, 1996,52 : 1096 - 1105.
  • 4GOTTESMAN D. A Class of Quantum Error-Correcting Codes Saturating the Quantum Hamming Bound [ J ]. Phys Rev A, 1996,54 (3) :1862 - 1869.
  • 5GOTTESMAN D, Stabilizer Codes and Quantum Error Correction [EB/OL]. [2010-04-12 ]. http:// lanl. arxiv, org/ abs/quantph./9705052vl.
  • 6MACKAY D, MITCHISON G, MCFADDEN P. Sparse Graph Codes for Quantum Error Correction [ J ]. IEEE Transactions on Information Theory,2004,50:2315 - 2330.
  • 7MACKAY D. God error-correcting codes based on very sparse matrices [ J ]. IEEE Transaction on Information Theory, 1999,45 : 399 - 432.
  • 8COLLBOURN C J, DINITZ J H. The Handbook of Combinatorial Designs [ M ]. Boca Raton : CRC Press, 1996.
  • 9VASIC B, MILENKOVIC O. Combinatorial Constructions of Low- Density Parity-Check Codes for Iterative Decoding[ J]. IEEE Transactions on Information Theory,2004,50(6 ) : 1156 - ! 176.
  • 10靳蕃,陈志.组合编码原理及应用[M].上海:上海科学技术出版社,1994.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部