期刊文献+

绝热量子计算 被引量:4

Adiabatic Quantum Computation
下载PDF
导出
摘要 着重从物理学和计算机科学角度阐述和分析绝热量子计算:首先介绍绝热量子计算的基本原理及其计算能力,然后通过绝热量子计算与传统量子计算的性质和物理实现方式的对比阐述前者的某些优势,在此基础上介绍绝热量子算法,最后探讨了绝热量子计算的前景及发展趋势。 This paper describes and analyses AQC from the perspectives of physics and computer science : firstly,explain the basic principle and the computational power of AQC,and then analysis the advantages of AQC by contrast with GMQC, and then according to the theoretical foundation of AQC,introduce the adiabatic quantum algorithms. Finally, discuss the prospects and further works of AQC and adiabatic quantum computer.
作者 吴楠 宋方敏
出处 《南京邮电大学学报(自然科学版)》 2011年第2期19-26,共8页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)(2005CB321901) 软件开发环境国家重点实验室开放课题(SKLSDE-07-002) 国家自然科学基金创新研究群体科学基金(60721002)资助项目
关键词 绝热量子计算 计算模型 量子算法 计算能力 可扩展量子计算 adiabatic quantum computation computational model quantum algorithm computational power scalable quantum computation
  • 相关文献

参考文献24

  • 1NIELSEN M A,CHUANG I L Quantum Computation and Quantum Information [ bl ]. Cambridge: Cambridge University Press,2000.
  • 2DEUTSCH D. Quantum theory,the Chureh-Turing Principle and the universal quantum computer[ J ]. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 1985,400:97 - 117.
  • 3FEYNMAN R P. Simulating physics with computers [ J ]. International J Theor Phys,1982(21 ) :467 -488.
  • 4DIVINCENZO D P. Quantum computation [ J ]. Science, 1995 (270) :255 - 261.
  • 5CERF N. Adiabatic quantum computation [ D ]. Belgium : University of Bruxelles (ULB) ,2005.
  • 6GROVER L K. A fast quantum mechanical algorithm for database search [ C ]//Proceeding of the 28^th Annual ACM Symposium on Theory of Computing. New York:ACM Press, 1996.
  • 7SHOR P. Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer[ J ]. SlAM J on Computing, 1997(26) :1484 - 1509.
  • 8SHOR P W. Introduction to quantum algorithms [ EB/OL ]. http:// arxiv, org/abs/quant -ph/0005003.
  • 9SHOR P W. Why haven't more quantum algorithms been found? [ J ]. J ACM ,2003 ,50 : 87 - 90.
  • 10NIEI.~EN M A, DOWLING M R, GU M, et al. Quantum computation as geometry [ J ]. Science,2006,311 : 133 - 1135.

同被引文献19

  • 1文家焱,王国利.绝热量子搜索算法中的纠缠与能量分析[J].计算机研究与发展,2008,45(z1):81-86. 被引量:1
  • 2今日数学及其应用[J].自然辩证法研究,1994,10(1):3-17. 被引量:29
  • 3Kirpatrick S, Gelatt C D, Vecchi M P. Optimization bysimulated Annealing [ J ]. Science, 1983,220 ( 4598 ):671-680.
  • 4Kadowaki T,Hidetoshi N. Quantum annealing in the trans-verse ising model [ J] . Physics Review E,1998,58 (5):5355-5364.
  • 5Lee Y, Berne B J. Global optimization: Quantum thermalannealing with path integral Monte Carlo [ J]. Journal ofPhysical Chemistry A,2000,104( 1) :86-95.
  • 6Stella L,Santoro G E,Tosatti E. Optimization by quantumannealing:Lessons from simple cases [ J]. Physics ReviewB,2005,72(1) :14303-14317.
  • 7Stella L, Santoro G E, Tosatti E. Monte Carlo studies ofquantum and classical annealing on a double-well [ J ].Physics Review B,2006,73( 14) : 144302-144316.
  • 8Stella L,Santoro G E. Quantum annealing of an ising spin-glass by Green's function Monte Carlo [ J]. Physics Re-view E,2007,75(3) :36703-036710.
  • 9Stella L. Studies of classical and quantum annealing [EB/OL] . [ 2015-04-09 ] . http://www. sissa. it/cm/thesis/2005/stella. pdf.
  • 10Masayuki 0, Hidetoshi N. Quantum annealing: An intro-duction and new developments [ J ] Journal of Computa-tional & Theoretical Nanoscience,2011,8(6) :963-971.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部