期刊文献+

基于数据分割与主成分分析的LAI遥感估算 被引量:10

Estimating leaf area index from remote sensing data: based on data segmentation and principal component analysis
下载PDF
导出
摘要 针对叶面积指数(LAI)经典统计反演模型存在估算效果不理想以及反演效率低等问题,提出了一种基于农学物候的数据分割与主成分分析结合的遥感估算方法.综合了原始光谱和微分(或差分)光谱主成分信息作为自变量,融入了以农学物候为先验的数据分割思想,并引入了多尺度建模方式参与反演过程.以冬小麦为实验对象,进行数值模拟和比较分析.结果显示,该方法既能有效地提高整体估算精度,又能显著地改善数据饱和问题,且在全样本遍历时体现了稳定鲁棒性. According to the unsatisfactory and lower efficiency of classical statistical models in leaf area index(LAI) estimation,a new inversion method combined with phenology-based data segmentation and principal component analysis was proposed in this paper.In the method,principal components of spectral data and differential(or difference) spectral data were chosen as independent variables,and phenology-based data segmentation was integrated into data processing in order to improve estimation accuracy.In addition,multi-scale was involved in modeling.Winter wheat was selected as experimental object for numerical simulation and comparative analysis.Results not only showed high precision in whole estimation and effectively improved data saturation,but also manifested stability and robustness under full scan.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第2期124-130,共7页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金项目(40701120) 国家863计划项目(2006AA120108) 北京市自然科学基金项目(4092016) 北京市科技新星计划(2008B33)
关键词 主成分分析(PCA) 农学物候 数据分割 多尺度建模 叶面积指数(LAI) principal component analysis(PCA) phenology data segmentation multi-scale modeling leaf area index(LAI)
  • 相关文献

参考文献8

  • 1Verstraete M M, Pinty B, Myneni R B. Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing [ J ]. Remote Sensing of Environment, 1996,58 ( 2 ) : 201-214.
  • 2Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices [ J ]. Remote Sensing of Environment, 1996,55 ( 2 ) :95-107.
  • 3杨飞,张柏,宋开山,王宗明,刘殿伟,刘焕军,李方,李凤秀,国志兴,靳华安.大豆叶面积指数的高光谱估算方法比较[J].光谱学与光谱分析,2008,28(12):2951-2955. 被引量:20
  • 4王秀珍,黄敬峰,李云梅,王人潮.水稻叶面积指数的高光谱遥感估算模型[J].遥感学报,2004,8(1):81-88. 被引量:94
  • 5Willsky A S. Muhiresolution Markov models for signal and image processing [ J ]. Proceedings of the IEEE, 2002,90 (8) : 1396-1458.
  • 6Somers B, Delalieux S, Verstraeten W W, et al. Magnitude and shape related feature integration in hyperspectral mixture analysis to monitor weeds in citrus orchards[ J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47 ( 11 ) :3630-3642.
  • 7Dunham M H. Data Mining: Introductory and Advanced Topics [ M ]. London : Prentice Hall ,2003.
  • 8易大义,陈道琦.数值分析引论.杭州:浙江大学出版社,2003.

二级参考文献6

共引文献110

同被引文献125

引证文献10

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部