摘要
对于一个二元解析函数,讨论了它在一个矩形区域上的二元多项式的Lagrange插值,证明了为使任意选取节点的插值收敛,被插值函数必须解能析延拓到一个足够大的区域.
In this paper, the multivariate polynomial interpolation is discussed for functions of two variables. For a holomorphic function of two variables, we discussed its Lagrange interpolation by the polynomial with two variables in the domain which is a rectangle. It was proved that the function interpolated must have an analytic continuity to a domain which could he large enough for the convergence of interpola- tion of arbitrarily chosen nodes.
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2011年第2期119-122,共4页
Journal of Wuhan University:Natural Science Edition
基金
国家自然科学基金资助(10601036)
天津市自然科学基金资助项目(07JCYBJC13600)
关键词
解析插值
多元全纯函数
插值收敛
analytic interpolation
multivariate holomorphic function
convergence of interpolation