期刊文献+

关于二元解析插值的收敛性 被引量:1

On the Convergence of Analytic Interpolation of Two Variables
原文传递
导出
摘要 对于一个二元解析函数,讨论了它在一个矩形区域上的二元多项式的Lagrange插值,证明了为使任意选取节点的插值收敛,被插值函数必须解能析延拓到一个足够大的区域. In this paper, the multivariate polynomial interpolation is discussed for functions of two variables. For a holomorphic function of two variables, we discussed its Lagrange interpolation by the polynomial with two variables in the domain which is a rectangle. It was proved that the function interpolated must have an analytic continuity to a domain which could he large enough for the convergence of interpola- tion of arbitrarily chosen nodes.
作者 汤国明 刘华
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期119-122,共4页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助(10601036) 天津市自然科学基金资助项目(07JCYBJC13600)
关键词 解析插值 多元全纯函数 插值收敛 analytic interpolation multivariate holomorphic function convergence of interpolation
  • 相关文献

参考文献6

  • 1Walsh J L. Note on polynomial interpolation to analytic functions[J]. Proc Nat Acad Sci U S A, 1933,19: 959-963.
  • 2Walsh J L. Interpolation and Approximation by Ra- tional Functions in the Complex Domain [M]. Ptovi- dence R I..AMS,1969.
  • 3Varga R S. Topics in Polynomial and Rational Inter- polation and Approximation [M]. Montreal: Presses de 1' Universite de Montreal, 1982 : 79-132.
  • 4Du Jinyuan, Liu Hua. On convergence ot analytic functions[J]. J Approx Theory ,2002,114(1) :48-56.
  • 5Liu Hua, Du Jinyuan, Shang Guozhu. The region of analytic functions for the convergence of trigonometric interpolation[J]. J Approx Theory, 2010,162(1):54- 63.
  • 6Scheidemann V. Introduction to Complex Analysis in Several Variables[M]. Berlin : Birkhauser , 2005.

同被引文献4

  • 1李庆扬 王能超 易大义.数值分析[M].武汉:华中理工大学出版社,2000..
  • 2Liu H, Du J Y, Shang G Z. The region of analytic func- tion for the convergence of trigonometric interpolation [J]. Journal of Approximation Theory,2010,162 ( 1 ) : 54-63.
  • 3Ahlin A C. A bivariate generalization of Hermite interpo- lation formula [ J]. Mathematics of Computation, 1964, 18:264-273.
  • 4王家正,焦建玲.矩形网格上二元切触插值的表现公式[J].高等学校计算数学学报,2003,25(4):296-302. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部