期刊文献+

一类时滞递归神经网络模型的周期振动性 被引量:2

Periodic Oscillation Analysis for a Recurrent Neural Networks Model with Time Delays
下载PDF
导出
摘要 利用线性矩阵不等式方法,研究一类5个神经元时滞递归神经网络模型的周期振动性,得出保证系统存在周期振动性的一组充分条件,理论分析和数值仿真显示,所得结果为一类5个神经元时滞递归神经网络模型提供了新的振动性判定准则。 The existence of periodic oscillations for a five-neuron recurrent neural network with time delay between neural interconnections is investigated.New criteria are proposed to guarantee the existence of periodic oscillations for network model.Numerical simulation validates this method and demonstrates the correctness of theoretical analysis.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2011年第1期29-34,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10961005)
关键词 递归神经网络 时滞 周期振动性 线性矩阵不等式 recurrent neural networks dealys periodic oscillation LMI
  • 相关文献

参考文献10

  • 1RUIZ A ,OWENS D H,TOWNI.EY S. Existence ,learning ,and replication of periodic motion in recurrent neural networks[J].IEEE Transactions on Neural Networks, 1998,9(4) : 651-661.
  • 2TOWNLEY S,ILCHMANN A,WEISS M G,et al. Existence and learning of oscillations in recurrent neural networks [J].IEEE Transactions on Neural Networks, 2000,11 (1) : 205-214.
  • 3BeLAIR J,CAMPBELL S A,van den DRIESSCHE P. Frustration stability and delay-induced oscillations in a neural network model[J]. SIAM J Appl Math, 1996,56 (1) : 245-255.
  • 4YU Wen-wu,CAO Jin-de. Stability and Hopf bifurcations on a two-neuron system with time delay in the frequency domain [J].Int J Bifur Chaos, 2007,17 (4) 1355-1366.
  • 5FENG C,PLAMONDON R. Existence of oscillations in recurrent neural networks with time delay models[J]. DCDIS A Suppl Adv Neural Networks ,2007,14(S1) : 111-118.
  • 6GAO B,ZHANG Wei-nian. Equilibria and their bifurcations in a recurrent neural network involving iterates of a tran- scendental function[J].IEEE Transactions on Neural Networks,2008,19(5):782-794.
  • 7FENG Chun-hua,O'REILLY C,PLAMONDON R. Permanent oscillations in a 3-node recurrent neural network modeli[J].Neurocomputing, 2010,74 ( 1/3) : 274-283.
  • 8HALE J. Theory of functional differential equations[M].New York :Springer-Verlag,1977:21-24.
  • 9FORTI M,TESI A. New conditions for global stability of neural networks with application to linear and quadratic programming problems[J].IEEE Transactions on Circuits and Systems I :Fundamental Theory and Applications, 1995,42 (7) : 354-366.
  • 10CHAFEE N. A bifurcation problem for a functional differential equation of finitely retarded type[J].Journal of Mathematical Analysis and Applications, 1971,35 (2) : 312-348.

同被引文献26

  • 1朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237.
  • 2ZHANG Hua-guang,WANG Zhan-shan,LIU De-rong. Robust stability analysis for interval Cohen-Grossberg neural networks with unknown time-varying delays [J]. IEEE Trans Neural Networks, 2008,19 (11): 1942-1955.
  • 3XU Jun ,CA() Yong-yan,SUN You-xian,et al. Absolute exponential stability of recurrent neural networks with gen- eralized activation function[J]. IEEE Trans Neural Networks,2008,19(6) :1075-1089.
  • 4JIN Hui-liang,ZACKSENHOUSE M. Oscillatory neural networks for robotic yo-yo controt[J]. IEEE Trans Neural Networks, 2003,14 (2) : 317-325. :.
  • 5NISHIKAWA T,LAI Ying-cheng,HOPPENSTEADT F C. Capacity of oscillatory associative memory networks with error-free retrieval[J]. Physical Riview Letters, 2004,92 (10) : 108101.
  • 6YANG Yu,YE Jin. Stability and bifurcation in a simplified five-neuron BAM neural network with delays[J]. Chaos, Solitons and Fractals ,2009,42(4) : 2357-2363.
  • 7CHAFEE N. A bifurcation problem for a functional differential equation of finitely retarded type[J]. J Math Anal Ap- p1,1971,35(2):312-348.
  • 8Bae $, Hadiji R, Vigneron F, et al. A non- linear problem involving a critical Sobolev exponent[ J]. J Math Anal Appl,2012, 396( 1 ) :98 - 107.
  • 9Zhang Y J. Multiple solutions of an inhomogeneous Neumann problem for an elliptic system with critical Sobolev exponent [ J ]. Nonlinear Anal:TMA,2012,75 (4) :2047 -2059.
  • 10Lin H L. Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent[ J]. Nonlinear Anal :TMA, 2012,75 (4) :2660 - 2671.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部