期刊文献+

基于有偏厚尾ARMAX模型的短期电价预测

Short-term Electricity Price Forecasting Based on ARMAX Model with Skewness and Kurtosis
下载PDF
导出
摘要 基于正态分布假设的时间序列分析模型不能有效地处理电价的有偏厚尾特征。在对电力市场现货电价的影响因素和波动规律综合分析的基础上,提出了一种基于有偏厚尾ARMAX模型的的短期电价预测方法。该方法采用正弦函数和基于正态分布概率密度函数的Gram-Charlier展开来描述多重周期性和有偏厚尾性,可同时考虑电价分布的多重周期性、有偏厚尾性及其与负荷之间的非线性相关性。对PJM电力市场历史数据的算例研究表明,该方法计算量小,待估参数少,能准确反映电价的变化规律,具有一定的实用价值。 The model of time series analysis with normal distribution can not effectively deal with the skewness and kurtosis of electricity spot price.With comprehensive consideration of the various influencing factors and the fluctuation rules of the electricity spot price,a short-term electricity price forecasting method based on ARMAX model with skewness and kurtosis is proposed,in which the sine function and Gram-Charlier series expansion of the normal density function are used to describe the multicycle,skewness and kurtosis.So the skewness,kurtosis,multi-cycle and non-linear relationship among load and spot price can be fully taken into account.The numerical example based on the historical data of the PJM market shows that the model can reflect the features of electricity price better,and hold less computational cost,parsimonious scale of estimated parameters and high practical application value.
出处 《机电工程技术》 2011年第4期18-21,75,共5页 Mechanical & Electrical Engineering Technology
基金 海南软件职业技术学院科研基金(编号:Hr201006)
关键词 电价预测 偏度 峰度 多重周期性 Gram—Charlier展开 electricity price forecast skewness kurtosis multi-cycle Gram-Charlier expansion
  • 相关文献

参考文献18

  • 1陈思杰,周浩.电力市场电价预测方法综述[J].继电器,2006,34(11):54-60. 被引量:30
  • 2Szkuta B R, Sanabra L A, Dillon T S. Electricity price short- term forecasting using artificial neural networks [ J] IEEE Transactions on Power Systems, 1999, 14 (3): 851-857.
  • 3CatalaoJP S, Mariano SJ P S, MendesVMF, et al. Short- term electricity prices forecasting in a competitive market: a neu- ral network approach [J] . Electric Power System Research, 2007, 77 (10): 1297-1304.
  • 4Guo J J, Peter B L. Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction [J] . IEEE Trans on Power Systems, 2003, 18 (2) : 665-672.
  • 5张显,王锡凡,陈芳华,叶斌,陈皓勇.分时段短期电价预测[J].中国电机工程学报,2005,25(15):1-6. 被引量:60
  • 6Hong Y Y, Hsiao C Y. Locational marginal price forecasting in deregulated electricity markets using artificial intelligence [J] . lEE Proc. on Gener. Transm. Distrib., 2002, 149 (5) : 621- 626.
  • 7Claudia P R, George J A. Energy price forecasting in the Ontario competitive power system market [ J] . IEEE Trans on Power Systems, 2004, 19 (1): 366-374.
  • 8Zhang Li, Peter B L. Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method [J] . IEEE Trans on Power Systems, 2005, 20 (1) : 59-66.
  • 9Amjady N. Day-ahead price forecasting of electricity markets by a new fuzzy neural network [J] . IEEE Trans on Power Systems, 2006, 21 (2): 887-986.
  • 10Fan S, Mao C, Chen L. Next-day electricity price forecasting using a hybrid network [J] . IEE Proc. On Gener. Transm. Distrib., 2007, 1 (1): 176-182.

二级参考文献67

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部