期刊文献+

高精度(10^(-15))可搬运铷原子喷泉钟的研制 被引量:3

Working for a mobile high accuracy (10~(-15)) rubidium atomic fountain clock
原文传递
导出
摘要 原子喷泉钟是目前世界上最准的运行原子钟,主要包括铯喷泉钟和铷喷泉钟两种.中国科学院上海光学精密机械研究所于2003年开始开展了可搬运小型喷泉铷钟样机的研制,它的主要特点是:以铷原子做工作介质、损耗低、信噪比高、冷原子碰撞频移低;通过折叠光路设计,其对激光的功率要求降低2/3,系统更加紧凑稳定,更加有利于喷泉钟的工程化.该原子钟已经获得了微波跃迁的Ramsey干涉条纹,其信噪比约100,并实现了闭环锁定,1s的稳定度为8×10?13,4×104s稳定度优于6×10?15.目前正在进行误差的评估工作及系统的改进,近期将进行项目验收,预期总的频率不确定度优于4×10?15. Fountain clocks,including cesium fountains and rubidium fountains,are the most accurate running atomic clocks in the world.A mobile rubidium clock prototype has been researching at SIOM since 2003,the unique features of the fountain clocks are:less cold-atom loss,higher SNR and less collision-shift were acquired by operating with rubidium,a fold optical path decreased laser power by 2/3,which also made the whole device be more stable,compact,and easier to manufacture.The Ramsey finger of microwave-transition in the fountain clock has been obtained with its SNR of about 100.The fountain clock has been lock to a H-maser,Allan Deviation calculating had shown that the short-term fractional frequency instability was 8×10?13 at 1 s,and long-term fractional frequency instability was better than 6×10?15 in 4×104 s.Errors evaluating and system optimizing are in process,the total fractional uncertainties are expected to be less than 4×10?15 when it is evaluated recently.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2011年第5期611-619,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(批准号:10974215) 华东科技大学精密光谱科学与技术国家重点实验室开放课题资助项目
关键词 铷原子喷泉钟 折叠光路 误差评估 喷泉钟样机 rubidium atomic fountain clock fold optical path uncertainty evaluation fountain clock prototype
  • 相关文献

参考文献2

二级参考文献11

  • 1R. Wynands and S. Weyers, Metrologia 42, S64 (2005).
  • 2B. Guinot and E. F. Arias, Metrologia 42,S20 (2005).
  • 3J. Vanier and C. Audoin, Metrologia 42, S31 (2005).
  • 4J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol, 1989).
  • 5G. Wang, W. Ji, J. Ma, L. Wang, L. Xiao, and S. Jia, Chinese J. Lasers (in Chinese) 35, 221 (2008).
  • 6L. Yi, X. Qi, W. Chen, D. Zhou, T. Zhou, X. Zhou, and X. Chen, Chin. Opt. Lett. 7, 36 (2009).
  • 7S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, and F. L. Walls, Metrologia 39, 321 (2002).
  • 8Y. Wang Q. Wang, J. Fu, and T. Dong, The Principle of Quantum Frequency Standards (in Chinese) (Science Press, Beijing, 1986).
  • 9A. Daniel and Steck, "Rubidium 87 D Line Data", http://steck.us/alkalidata (September 1, 2008).
  • 10R. Wei, "Design and prior work of a compact rubidium atomic fountain" PhD. Thesis (in Chinese) (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 2003).

共引文献1

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部