期刊文献+

PKSI-AT结构域及在组合生物合成研究中的应用 被引量:1

Type Ⅰ Polyketide Synthase Acyltransferase Domain and Its Application in Combinatorial Biosynthesis
下载PDF
导出
摘要 Ⅰ型聚酮合酶(PKSI)的模块型分子结构组织方式非常适合于组合生物合成研究.结构域和模块通过二级组织方式构成了PKSI的催化单元,其它结构多肽则作为"支架".在"支架"上对结构域和模块两个水平进行突变、替换、插入、缺失等基因操作形成重组PKS,可以理性设计并获得复杂多样的新活性或高活性的聚酮化合物.利用PKSI进行组合生物合成以期获得新聚酮化合物的研究迄今已有约25年,但是目前仍不能够对PKS进行完美的理性设计,快速合成目标活性的新聚酮化合物.PKS中的酰基转移酶结构域的研究在PKS的组合生物合成研究中一直发挥着重要作用.本文结合本课题组的研究基础,对AT结构域的结构、功能及在组合生物合成研究中的最新研究成果作以分析总结. The modular organization of type Ⅰ polyketide synthase makes it suitable for the study on combinatorial biosynthesis. Through a striking two-level arrangement,domains and modules constitute the catalytic units of type I PKS. In the rest structural polypeptides, serving as scaffolds, mutation,substitution,insertion,and deletion of domains or modules on the two levels can be achieved through genetic manipulation thereby resulting in production of a variety of rationally designed polyketides with novel or higher activities. It has been about twenty-five years since the type Ⅰ PKS was employed in the study on combinatorial biosynthesis for novel polyketides,but the study on type IPKS can not yet make perfectly rational designation and quick production of novel polyketides. Studies on acyltransferasedomain (AT) of type IPKS play an important role in the PKS combinatorial biosynthesis. In this review,we focus on the function of AT domain and its role in combinatorial biosynthesis,and provide a brief overview on the latest studies.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2011年第3期218-223,共6页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家自然科学基金(No.30670043) 淮海工学院自然科学基金项目(No.KX08043)及人才引进基金项目(No.KQ09015)~~
关键词 Ⅰ型聚酮合酶 酰基转移酶结构域 组合生物合成 type Ⅰ polyketide synthase acylransferase domain combinatorial biosynthesis
  • 相关文献

参考文献35

  • 1Katz L. The DEBS paradigm for type I modular polyketide synthases and beyond [ J ]. Methods Enzymol, 2009,459 : 113- 142.
  • 2Castaldo G, Zucko J, Heidelberger S, et al. Proposed arrangement of proteins forming a bacterial type II polyketide synthase [J]. Chem Biol, 2008, 15(11): 1156-1165.
  • 3Morita H, Wanibuchi K, Kate R, et al. Expression, purification and crystallization of a plant type III polyketide synthase that produces diarylheptanoids [ J 1. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2010, 66(Pt 8): 948-950.
  • 4Staunton J, Weissman K J. Polyketide biosynthesis: millennium review [J]. Nat Prod Rep, 2001, 18(4): 380-416.
  • 5Khosla C, Kapur S, Cane D E. Revisiting the modularity of modular polyketide synthases [J]. Curr Opin Chem Biol, 2009, 13(2) : 135-143.
  • 6Strieker M, Tanovic A, Marahiel M A. Nonribosomal peptide synthetases: structures and dynamics [ J ]. Curr Opin Struct Biol, 2010, 20(2) : 234-240.
  • 7Dimroth P, Walter H, Lynen F. Biosynthesis of 6-methylsalicylic acid [J]. EurJ Biochem, 1970, 13(1): 98-110.
  • 8Horinouehi S. Combinatorial biosynthesis of plant medicinal polyketides by microorganisms [J]. Curr Opin Chem Biol, 2009, 13(2) :197-204.
  • 9Hopwood D A, Malpartide F, Kieser H M, et al. Production of hybrid antibiotics by genetic engineering [ J ~. Nature, 1985,314 (6012) :642-644.
  • 10Tang Y, Kim C Y, Mathews II, et al. The 2.7-Angstrom crystal structure of a 194-kDa homodimerlc fragment of the 6- deoxyerythronolide B synthase [ J]. Proc Natl Acad Sci U S A, 2006, 103(30) :11124-11129.

同被引文献30

  • 1GrUnewald J, Marahiel M A. Chemoenzymatic and template- directed synthesis of bioactive macrocyclic peptides [ J ]. Microbiol Mol Biol Rev, 2006, 70(1 ) : 121-146.
  • 2Hur G H, Vickery C R, Burkart M D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology[ J]. Nat Prod Rep, 2012,29 (10) : 1074-1098.
  • 3Mootz H D, Schwarzer D, Marahiel M A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases [ J ]. Chembiochem, 2002,3 ( 6 ) :490-504.
  • 4Gehring A M, DeMoll E, Fetherston J D, et al. Iron acquisition in plague : modular logic in enzymatic biogenesis of yersiniabactinby Yersinia pestis[ J]. Chem Biol, 1998, 5 (10) : 573-586.
  • 5Sieber S A, Marahiel M A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics [J]. Chem Rev, 2005, 105(2): 715-738.
  • 6White C J, Yudin A K. Contemporary strategies for peptide macrocyclization [ J ]. Nat Chem, 2011,3 (7) :509-524.
  • 7Du L, Lou L. PKS and NRPS release mechanisms[J]. Nat Prod Rep, 2010, 27(2) : 255-278.
  • 8Rachid S, Scharfe M, Blficker H, et al. Unusual chemistry in the biosynthesis of the antibiotic chondrochlorens [ J ]. Chem Biol, 2009, 16(1) : 70-81.
  • 9Eys S, Schwartz D, Wohlleben W, et al. Three thioesterases are involved in the biosynthesis of phosphinothricin tripeptide in Streptomyces viridochromogenes Tti494 [ J ]. Antimicrob Agents Chemother, 2008,52(5) : 1686-1696.
  • 10Ehmann D E, Shaw-Reid C A, Losey H C, et al. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration an d selectivity in acyl-AMP transfers to thiolation domain cosubstrates[ J]. Proc Natl Acad Sci U S A, 2000, 97(6): 2509-2514.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部