期刊文献+

氧化铝气体分布器应用小球藻培养的研究 被引量:2

The Effect of Aeration on the Growth and Lipid Content on Chlorella vulgaris LICME002 in the Applied Alumina Gas Distributor Bubbling Column Photobioreactor
原文传递
导出
摘要 光生物反应器设计中,气体分布器对微藻生长有较大的影响,尤其是在鼓泡式光生物反应器中更为显著。实验考察了采用氧化铝烧制的多孔气体分布器的5L鼓泡式光生物反应器中通气速率、CO2浓度对小球藻LICME002生物量、叶绿素含量、油脂积累的影响。对该气体分布器下的CO2浓度和通气速率对小球藻的作用机理进行了初步的探讨。结果表明,CO2浓度为3%时,该株微藻生物量、叶绿素、油脂积累的最佳;CO2浓度超过6%时各项指标显著下降。通过对0.1vvm,0.4vvm,0.7vvm、1.0vvm的通气速条件下的各项指标的分析,确定最佳通气条件为0.4vvm。结论显示,在最佳通气速率和CO2浓度下,微藻生物量能达到1.52g/L,油脂含量达到31.5%。 In the study of photobioreactor,gas distributor has great influence to the growth of microalgae,especially in the bubbling column reactor.The effect of the gas-flow rate and CO2 concentration on the biomass,chlorophyll a,and lipid accumulation of Chlorella vulgaris LICME002 in the 5L bubbling photobioreactor with a alumina gas distributor.The results showed that the 3% CO2 is the optimum condition for biomass,chlorophyll a,oil accumulation.When the CO2 concentration exceeded 6%,the algae's parameters decreased significantly.With the analysis of the algae's parameters at 0.1vvm,0.4vvm,0.7vvm,1.0vvm,and the gas-flow rate 0.4vvm is the best one.Results showed that the optimum gas-flow rate and CO2 concentration,the microalgae biomass can achieve 1.52 g/L,oil content achieved 31.5%.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2011年第3期61-65,共5页 China Biotechnology
基金 国家自然科学基金(20936002) 国家"973"计划(2007CB707805 2009CB724700 2011CB200906) 江苏省六大人才高峰项目(2008) 江苏省高校科研成果产业化推进项目(2009) 教育部新世纪优秀人才支持计划(NCET-09-0157) 教育部霍英东教育基金(123014)资助项目
关键词 气体分布器 通气速率 小球藻 二氧化碳 光生物反应器 油脂 Gas distributor Gas-flow rate Chlorella vulgaris CO2 Photobioreactor Lipid
  • 相关文献

参考文献31

  • 1Degen J, Uebele A, Retze A, et al. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. Biotechnol,2001, 92 (2) :89-94.
  • 2Barbosa J, Janssen M, Ham N, et al. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng,2003, 82 (2) : 170-179.
  • 3Vega-Estrada J, Montes-Horcasitas M C, Dominguez-Bocanegra AR, et al. Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift, photobioreactor under aeration conditions avoiding cell damage. Appl Microbiol Biotechnol,2005, 68 ( 1 ) : 31-35.
  • 4Buwa V V, Ranade V V. Dynamics of gas-liquid flow in a rectangular babble column: experiments and single/multi-group CFD simulations. Chem Eng,2002, 57 (22-23) :4715-4736.
  • 5Buwa V V, Ranade V V. Characterization of dynamics of gasliquid flows in rectangular bubble columns. A. I. Ch.E. J, 2003,12(50):2394-2407.
  • 6Abraham M, Sawant S B. Effect of sparger design on the hydrodynamics and mass transfer characteristics of a bubble column. Indian Chem Eng, 1989,1:31-38.
  • 7Li G, Yang X G, Dai G. CFD simulation of effects of the configuration of gas distributors on gasliquid flow and mixing in a bubble column. Chemical Engineering Science, 2009, 64 ( 24 ) : 5104-5116.
  • 8Li J M, Cheng L H, Xu X H. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology,2010, I01 (17) :6797-6804.
  • 9Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae DunalieUa Cells. J Biosci Bioeng, 2006, 101 ( 3 ) : 223 -226.
  • 10Chiu S Y, et al. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology,2008, 99 ( 9 ) : 3389-3396.

同被引文献24

  • 1徐志标,裴鲁青,骆其君,严小军.绿色巴夫藻的光生物反应器半连续培养研究[J].海洋水产研究,2005,26(4):64-69. 被引量:10
  • 2缪晓玲,吴庆余.微藻油脂制备生物柴油的研究[J].太阳能学报,2007,28(2):219-222. 被引量:69
  • 3Attilio C, Alessandro A, Casazza D et al, 2009. Effect of tem- perature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Proc- essing, 48(6): 1146-1151.
  • 4Li X F, Xu H, Wu Q Y, 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotro- phic cultivation in bioreactors. Biotechnology and Bioengi- neering, 98(4): 764-771.
  • 5Liu Z Y, Wang G C, Zhou B C, 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11): 4717-4722.
  • 6Spolaore P, Joannis-Cassan C, Duran E et al, 2006. Commercial applications of microalgae. J Biosci Bioeng, 101 : 87-96.
  • 7Walter T, Purton S, Becker D K et al, 2005. Microalgae as bio- reactor. Plant Cell Rep, 24:629-641.
  • 8Wijffels R H, Barbosa M J, 2010. An outlook on microalgal bio- fuels. Science, 329(13): 796-799.
  • 9Williams P, 2007. Biofuel: Microalgae cut the social and eco- logical costs. Nature, 450(7169): 478.
  • 10张丽莉,吴垠,孙建明,王国栋.补充CO2对光生物反应器培养小球藻生长和光合作用的影响[J].水产科学,2008,27(11):570-573. 被引量:5

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部