期刊文献+

非-Archimedean随机空间中混合型泛函方程的解及稳定性

Solution and Stability of a Mixed Type Functional Equation in Non-Archimedean Random Spaces
下载PDF
导出
摘要 在非-Archimedean随机赋范空间的框架下,证明了Euler-Lagrange二次映象的广义稳定性.另外,文中还介绍了随机空间理论、非-Archimedean空间理论、以及泛函方程理论之间的联系. The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces was proved. Furthermore,the interdisciplinary relation among the theory of random spaces,the theory of non-Archimedean spaces and the theory of functional equations were also presented.
出处 《应用数学和力学》 CSCD 北大核心 2011年第5期623-634,共12页 Applied Mathematics and Mechanics
基金 宜宾学院自然科学基金资助(2009Z03)
关键词 广义Hyers-Ulam稳定性 Euler-Lagrange泛函方程 非-Archimedean赋范空间 P-ADIC域 generalized Hyers-Ulam stability Euler-Lagrange functional equation non-Archimedean normed space p-adic field
  • 相关文献

参考文献31

  • 1Forti G L. Hyers-Ulam stability of functional equations in several variables [J]. Aequationes Math, 1995, 50(1/2) : 143-190.
  • 2Hyers D H, Rassias Th M. Approximate homomorphisms [ J]. Aequationes Mathematics, 1992, 44(2/3) : 125-153.
  • 3Rassias Th M. On the stability of functional equations and a problem of Ulam [ J ]. Acta Appl Math, 2000, 62( 1): 23-130.
  • 4Czerwik S. Stability of Functional Equations of Ulam-Hyers-Rassias Type [ M ]. Florida: Hadronic Press, 2003.
  • 5Hyers D H, Isac G, Rassias Th M. Stability of Functional Equations in Several Variables [M]. Basel: Birkhauser Verlag, 1998.
  • 6Jung S M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis [M]. Florida: Hadronic Press, Inc, 2001.
  • 7Rassias Th M. Functional Equations, Inequalities and Applications [M]. Dordrecht, Boston and London: Kluwer Academic Publishers, 2003.
  • 8Alsina C. On the stability of a functional equation arising in probabilistic normed spaces [J]. General Inequalities. Vol 5. Basel: Birkhauser Verlag, 1987: 263-271.
  • 9Mirmostafaee M, Mirzavaziri M, Moslehian M S. Fuzzy stability of the Jensen functional equation[J]. Fuzzy Sets and Systems, 2008, 159(6) : 730-738.
  • 10Mirzavaziri M, Moslehian M S. A fixed point approach to stability of a quadratic equation[J]. Bulletin of the Brazilian Mathematical Society, 2006, 37(3) : 361-376.

二级参考文献28

  • 1S·库图苏,A·图纳,A·T·雅库特,海治(译),丁协平(校).直觉Menger空间中的广义压缩映射原理及其在微分方程中的应用[J].应用数学和力学,2007,28(6):713-723. 被引量:3
  • 2Ulam S M. Problems in Modern Mathematics [ M ]. Chapter Ⅵ, Science Editions. New York: Wiley, 1904.
  • 3Hyers D H. On the stability of the linear functional equation[J]. Proc Nat Acad Sci, 1941,27 (4) :222-224.
  • 4Aoki T. On the stability of the linear transformation in Banach spaces [ J ]. J Math Soc Japan, 1950,2:64-56.
  • 5Rassias Th,M. On the stability of the linear mapping in Banach spaces[J]. Proc Amer Math Soc,1978,72(2):297-300.
  • 6Baak C ,Moslehian M S. On the stability of J^*-homomorphisms [J]. Nonlinear Anal -TMA, 2005 ,53( 1 ) :42-48.
  • 7Chudziak J,Tabor J. Generalized pexider equation on a restricted domain[ J]. J Math Psychology, 2008,52 (6) : 389-392.
  • 8Czerwik S. Functional Equations and Inequalities in Several Variables [ M ]. River Edge, N J: World Scientific, 2002.
  • 9Hyers D H, Isac G, Rassias Th M. Stability of Functional Equations in Several Variables [ M]. Basel:Birkhauser,1998.
  • 10Jung S M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis [ M ]. Palm Harbor: Hadronic Press, 2001.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部