期刊文献+

3种人工神经网络模型预测大肠癌的初步研究 被引量:2

Application of three artificial neural network models in diagnosing colorectal carcinoma
下载PDF
导出
摘要 目的探讨大肠癌血清蛋白标志物、肿瘤标志物及联合多标志物人工神经网络(ANN)模型在预测大肠癌中的价值。方法大肠癌与健康对照血清样本106例,利用表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)检测血清蛋白质谱并筛选大肠癌蛋白标志物,电化学发光法检测癌胚抗原(CEA)、甲胎蛋白(AFP)、糖类抗原72-4(CA72-4)和CA19-9分别建立蛋白标志物、肿瘤标志物及蛋白标志物与肿瘤标志物结合的多标志物ANN模型。结果大肠癌患者和对照组间比较差异有统计学意义(P<0.001),筛选4个质荷比(m/z)分别为4 095、5 6404、4807、620 m/z蛋白建立ANN模型,预测大肠癌敏感度和特异度为92.3%和83.3%;肿瘤标志物模型预测大肠癌的敏感度为73.1%,特异度86.7%;联合筛选的4个标志蛋白和CEA、CA72-4建立的模型诊断大肠癌敏感度和特异度分别为92.3%和96.7%。结论联合蛋白标志物和肿瘤标志物建立ANN模型,在预测大肠癌中显示高通量、高敏感性和高特异性的特点,具有潜在应用价值。 Objective To establish three artificial neural network(ANN)models based on protein markers,tumor markers,multi-markers of colorectal carcinoma and discuss the application of these in diagnosing colorectal carcinoma.Methods This study included 106 serum from patients with colorectal carcinoma and healthy controls.The SELDI-TOF-MS were performed to screen serum protein markers.The ANN model based on the screened protein markers was established.The levels of carcinoembryonic antigen(CEA),AFP(α-fetoprotein),CA19-9(cancer antigen)and CA72-4 in serum from patients with colorectal carcinoma were detected by electrochemiluminescence determination.The model based on the tumor markers was established.The multi-markers model was constructed by the screened protein markers and tumor markers.Results The result showed a significant difference between patients with colorectal carcinoma and healthy controls(P0.01).Four specific protein peaks(m/z at 4 095,5 640,4 480,7 620) were chosen to build an ANN model,the model showed a sensitivity of 92.3%,a specificity of 83.3% to diagnose the colorectal carcinoma.The ANN model of tumor markers had a sensitivity of 73.1% and a specificity of 86.7% to diagnose the colorectal carcinoma.The multi-markers model showed a sensitivity of 92.3%,a specificity of 96.7% to diagnose colorectal carcinoma.Conclusion The preliminary results suggest that the multi-markers model based on protein markers and tumor markers have the high sensibility and specificity in diagnosing colorectal carcinoma.
出处 《检验医学与临床》 CAS 2011年第8期941-942,944,共3页 Laboratory Medicine and Clinic
关键词 大肠癌 表面增强激光解吸电离飞行时间质谱 人工神经网络 肿瘤标志物 colorectal carcinoma SELDI-TOF-MS artificial neural network tumor marker
  • 相关文献

参考文献7

二级参考文献47

  • 1贺佳,刘琦,贾雨辰,王振堂.肝癌放射介入治疗影响因素的分析及生存模型的建立[J].数理统计与管理,1994,13(6):33-38. 被引量:2
  • 2高蔚,聂绍发,施侣元.神经网络在生存分析中的应用进展[J].中国卫生统计,2006,23(4):358-360. 被引量:7
  • 3楼顺天 于卫 等.MATLAB程序设计语言[M].西安电子科技大学出版社,1998.1-193.
  • 4David F,Richard S. A neural network model for survival data. Statistics in Medicine, 1995,14:73-82.
  • 5Ruth,Ripley, Adrian L, et al. Non-linear survival analysis using neural networks. Statistics in Medicine,2004,23 : 825-842.
  • 6袁曾任,人工神经网络及其应用,1999年,1页
  • 7楼顺天,MATLAB程序设计语言,1998年,1页
  • 8Clark TG,et al.Survival analysis part Ⅰ:basic concepts and first analyses.Br J Cancer,2003,89:232-238.
  • 9Eleuteri A,et al.A novel neural network-based survival analysis model.Neural Netw,2003,16:855-864.
  • 10Liestol K,Andersen PK,Andersen U.Survival analysis and neural nets.Stat Med,1994,13:1189-200.

共引文献55

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部