摘要
本文用前馈神经网络的背传(BP)算法对股票交易进行了时间序列预报的研究.文中计算所采用的训练结果是价格绝对平均误差与实际值相比小于0.048,训练结果与实际值的相关系数大于0.9998.结果显示,如果神经网络可以被一组交易数据训练好,则对该时序系列的预报将会是成功的.
The time-series forecasting for stock trading market is studied by using the feedforward neural networks with back\|propagation algorithm. In this work, the trained mean absolute error of price ≤0.048 and the trained correlation coefficient ≥0.9998 has been achieved. The results show that if the network can be well trained with a set of trading data, the forecasting could be made satisfactorily.
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第3期95-98,共4页
Acta Scientiarum Naturalium Universitatis Nankaiensis