期刊文献+

基于互信息的贝叶斯网络结构学习算法 被引量:21

Bayesian Network Structural Learning Algorithm Based on Mutual Information
下载PDF
导出
摘要 贝叶斯网络结构学习是贝叶斯网络构建的核心,有效的结构学习算法是构建最优网络结构的基础。基于此,提出一种基于互信息的贝叶斯网络结构学习算法,该算法可以挖掘出数据集各属性中存在的隐含依赖关系,适时地对数据集进行降维操作,从而提高算法的效率,并可保证结果的准确性。实验结果表明,与常用的依赖分析算法SGS相比,在结果相似的情况下,该算法执行效率更高。 Bayesian network structural learning plays a very important role in the processing of Bayesian network's construction,and an effective structural learning algorithm is the base of constructing the optimum Bayesian network.An algorithm of Bayesian network structural learning(called MIBNS) based on mutual information is proposed.The algorithm can give the concealed dependency relationships among data attributes,and make dimension reduction at the right moment,which can improve the performed efficiency and ensure the accuracy rate.Experimental result shows that the algorithm is effective.Compared with the SGS,the algorithm of MIBNS is more effective in the similar results.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第7期62-64,共3页 Computer Engineering
基金 重庆市科技攻关计划基金资助项目(CSTC 2009AB2049 CSTC 2009AC2068)
关键词 贝叶斯网络 结构学习 互信息 Bayesian network structural learning mutual information
  • 相关文献

参考文献6

  • 1Neil M,Fenton N,Nielsen L.Building Large-scale Bayesian Networks[J].The Knowledge Engineering Review,2000,15(3):257-284.
  • 2Heckerman D,Geiger D,Chickering D M.Learning Bayesian Networks:The Combination of Knowledge and Statistical Data[J].Machine Learning,1995.20(5):197-243.
  • 3Nir F,Moises G Learning Bayesian Networks with Local Struc-tures[C]//Proceedirtgs of the 12th Conference on Uncertainty in Artificial Intelligence.New York,USA:[s.n.],1996:252-262.
  • 4Tsamardinos I,Brown E,Aleferis C F The Max-min Hill-climbing Bayesian Network Structure Learning Algorithm[J].Machine Learning,2006,65(1):31-78.
  • 5刘乐乐,田卫东.基于属性互信息熵的量化关联规则挖掘[J].计算机工程,2009,35(14):38-40. 被引量:12
  • 6Haykin S.神经刚络原理[M].叶世伟,译.北京:机械工业出版社.2004,.

二级参考文献9

  • 1Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules[C]//Proc.of the 20th International Conference on Very Large Data Bases.Santiago,Chile:[s.n.],1994:487-499.
  • 2Agrawal R,Srikant R.Mining Quantitative Association Rules in Large Relational Tables[C]//Proc.of the 15th ACM SIGMOD Symposium on Principles of Database Systems.Montreal,Canada:[s.n.],1996:1-12.
  • 3Fukuda T,Morimoto Y.Mining Optimized Association Rules for Numeric Attributes[C]//Proc.of the 15th ACM SIGMOD Symposium on Principles of Database Systems.Montreal,Canada:[s.n.],1996:182-191.
  • 4Zhang Zhaohui,Lu Yuchang,Zhang Bo.An Effective Partitioning Combining Algorithm for Discovering Quantitative Association Rules[C]//Proc.of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Singapore:[s.n.],1997:241-251.
  • 5Chien Been-chian,Lin Zin-long,Hong Tzung-pei.An Efficient Clustering Algorithm for Mining Fuzzy Quantitative Association Rules[C]//Proc.of IFSA World Congress and NAFIPS International Conference.Vancouver,Canada:[s.n.],2001:1306-1310.
  • 6Cover T M,Thomas J A.Elements of Information Theory[M].[S.1.]:John Wiley & Sons,Inc.,1991.
  • 7Brin S,Motwani R,Silverstein C.Beyond Market Baskets:Generalizing Association Rules to Correlations[C]//Proc.of ACM SIGMOD International Conference on Management of Data.Tucson,Arizona,USA:[s.n.],1997:265-276.
  • 8张朝晖,陆玉昌,张钹.发掘多值属性的关联规则[J].软件学报,1998,9(11):801-805. 被引量:61
  • 9苑森淼,程晓青.数量关联规则发现中的聚类方法研究[J].计算机学报,2000,23(8):866-871. 被引量:26

共引文献11

同被引文献142

引证文献21

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部