摘要
The entropy increase principle for an isolated system and the criteria of thermal equilibrium for an isolated system and systems with prescribed temperature and volume can be derived on the basis of the concept of entropy and the first and second laws of thermodynamics. In this paper, the entransy decrease principle for an isolated system is introduced on the basis of the concept of entransy. It is found that the entransy of an isolated system always decreases during heat transfer. This principle can be taken as an expression of the second law of thermodynamics for heat transfer. The thermal equilibrium criteria for an isolated system and a closed system are also introduced. It is found that when an isolated system reaches thermal equilibrium, its entransy is a minimum value. This criterion is referred to as the minimum entransy principle. When a closed system reaches thermal equilibrium, its free entransy is also a minimum value. This criterion is referred to as the minimum free entransy principle. Therefore, like entropy, entransy can be considered an arrow of time in heat transfer and used to describe the thermal equilibrium state.
The entropy increase principle for an isolated system and the criteria of thermal equilibrium for an isolated system and systems with prescribed temperature and volume can be derived on the basis of the concept of entropy and the first and second laws of thermodynamics. In this paper, the entransy decrease principle for an isolated system is introduced on the basis of the concept of entransy. It is found that the entransy of an isolated system always decreases during heat transfer. This principle can be taken as an expression of the second law of thermodynamics for heat transfer. The thermal equilibrium criteria for an isolated system and a closed system are also introduced. It is found that when an isolated system reaches thermal equilibrium, its entransy is a minimum value. This criterion is referred to as the minimum entransy principle. When a closed system reaches thermal equilibrium, its free entransy is also a minimum value. This criterion is referred to as the minimum free entransy principle. Therefore, like entropy, entransy can be considered an arrow of time in heat transfer and used to describe the thermal equilibrium state.
基金
supported by Tsinghua University Initiative Scientific Research Program
关键词
孤立系统
传热原理
热力学第二定律
熵增加原理
封闭系统
平衡系统
平衡条件
时间箭头
entropy increase principle, thermal equilibrium criterion, entransy decrease principle, minimum entransy principle,minimum free entransy principle