期刊文献+

合成液体燃料的活性炭负载钴基催化剂的反应性能 被引量:3

Performance of Co/AC Catalyst in Synthesizing Liquid-Fuel
下载PDF
导出
摘要 在固定床等温积分反应器中,考察了活性炭负载钴基催化剂(Co/AC)的费托(F—T)合成反应性能,采用BET、H2-TPR和SEM等方法对Co/AC催化剂进行了表征。表征结果显示,Co/AC催化剂孔道属于微孔和中孔的混合结构,可用纯H2还原,还原温度选取350~400℃。实验结果表明,升高反应温度和反应压力、减小气态空速、增加原料气中H2与CO的摩尔比(H2/CO比),有利于提高CO的转化率;升高反应压力、降低反应温度、减小气态空速及原料气H2/CO比有利于高碳烃和高碳醇的生成。Co/AC催化剂用于F—T合成较优的工艺条件为:反应温度230℃,反应压力4.0MPa,原料气H2/CO比2.00,气态空速2000h^-1.在该反应条件下,CO转化率为20.1%,CH4、低碳烃(C2~4)、高碳烃(C5^+)、低碳醇(C1~5OH)及高碳醇(C6^+OH)的选择性分别为19.1%,24.1%,365%,15.8%,4.5%。 The performance of Co/activated carbon (AC) catalyst in Fischer-Tropsch synthesis was evaluated in a fixed-bed integral reactor. The result showed that high temperature, high pressure, high n( H2 ) : n (CO) in syngas and low GHSV was beneficial to increase of the catalyst activity. The increase of pressure and the decreases of temperature, GHSV and n(H2): n(CO) would result in the increases of selectivities to hydrocarbons and alcohols with high carbon numbers. The Co/AC catalyst was characterized by means of BET, H2-TPR and SEM. The result showed that there were micropores and mesopores in the catalyst structure. The catalyst could be activated by H2 in the temperature range of 350 -400 ℃. Under the optimum conditions of reaction temperature 230 ℃, reaction pressure 4.0 MPa, n(H2) : n(CO) 2.00 and GHSV 2 000 h^-1, the conversion of CO was 20. 1%, and the + selectivities to CH4, C2-4, C5^+ , C1-5OH and C6OH were 19. 1% ,24. 1%, 36.5% , 15. 8% and 4.5 %, respectively.
出处 《石油化工》 CAS CSCD 北大核心 2011年第4期358-364,共7页 Petrochemical Technology
基金 国家高技术研究发展计划项目(2006AA05A111)
关键词 液体燃料 费托合成 活性炭负载钴基催化剂 合成气 liquid fuel Fischer-Tropsch synthesis cobalt/activated carbon catalyst syngas
  • 相关文献

参考文献4

二级参考文献131

共引文献58

同被引文献33

  • 1孙中海,伏义路,鲍骏.还原温度对超细K-Co-Mo合成低碳醇催化剂结构的影响[J].分子催化,2004,18(6):430-435. 被引量:1
  • 2DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal tod, 2002, 71(3-4):227-241.
  • 3VISCONTI C G; LIETTI T, TRONCONI E, et al. Detailed kinetics of the Fischer-Tropsch synthesis over Co-based catalysts containing Sulphur[J]. Catal tod, 2010, 154(3-4):202-209.
  • 4VAN DER BERG F R, CRA/A M W J, VAN DER CRAAN A M, et al. Reduction behavior of Fe/ZrO2 and Fe/K/ZrO2 Fiseher- Tropsch catalysts[J]. Appl catal A-Gen, 2003, 242:403- 416.
  • 5ZHANG C H, ZHAO G Y, LIU K K, et al. Adsorption and reaction of CO and hydrogen on iron-based Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A-Chem, 2010, 328:35-43.
  • 6HINDERMANN J P, HUTCHINGS G J, KIENNEMANN A. Mechanistic aspects of the formation of hydrocarbon and alcohols from CO hydrogenation[J]. Catal Rev Sci Eng, 1993, 35(1): 110-127.
  • 7ITOH H, NAGANO S, TAKEDA K and KIKUCHI E. Catalytic properties and crystalline structures of manganese-promoted iron ultrafine particles for liquid-phase hydrogenation of carbon monoxide[J]. Appl Catal A-Gen, 1993, 96:125-134.
  • 8STTERFIELD C N, HANLON R T, TUNG S E, et al. Effect of water on theiron-catalysed Fischer-Tropsch synthesis[J]. Ind Eng Chem Proc Des Dev, 1986, 25:407.
  • 9YATES I C, SATTERFIELD C N. Effect of carbon dioxide on the kinetics of the Fischer-Tropsch synthesis on iron catalysts[J]. Ind Eng Chem Res, 1989, 28(1):9-12.
  • 10WITHERS H P Jr, ELIEZER K F and MITCHELL J W. Slurry-phase Fischer-Tropsch synthesis and kinetic studies over support cobalt carbonyl derived catalysts[J]. Ind Eng Chem Res, 1990, 29:1807-1814.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部