期刊文献+

基于Elman神经网络的时间序列股票价格短期预测 被引量:3

Short-term Prediction on Time Series of Stock Price based on Elman Neural Network
下载PDF
导出
摘要 Elman神经网络是一种典型的回归神经网络,比BP神经网络具有更强的计算和适应时变特性的能力,因而非常适用于预测股市这一类极其复杂的非线性动力学系统。文章给出一种基于Elman神经网络的股票市场建模、预测及决策方法,对浦发银行股价在时间序列上作了连续若干天的短期预测,实验结果取得较高的预测精度、较为稳定的预测效果和较快的收敛速度。这表明该预测模型对于个股价格的短期预测是可行和有效的。 Elman neural network is a classical kind of recurrent neural network.It has greater ability to calculate than BP neural network.Thanks to its characteristic of adapting time variability,Elman neural network is very suitable to predict complicated nonlinear dynamics system such as stock market.This paper provides a stock market model and an approach to predict and decide based on Elman neural network.Meanwhile the author makes a short-term prediction on time series of PuFa Bank's stock price.The results of the experiment get higher precision,steadier forecasting effect and more rapid convergence speed.It shows that this kind of model is feasible and efficient to predict short-term stock price.
出处 《山西大同大学学报(自然科学版)》 2011年第2期5-7,60,共4页 Journal of Shanxi Datong University(Natural Science Edition)
关键词 ELMAN神经网络 时间序列 股票价格预测 Elman neural network time series stock price prediction
  • 相关文献

参考文献5

  • 1TA EKSOOS, INGOOH. Optimal signal multi-resolution by genetic algorithms to support artificial neural network for exchangerate fbrecasting [J]. Expert System with Application, 2000(18): 257 - 269.
  • 2CHUNG Kim-kwnng Finaneial forecasting using neural network or machine learning teehuiques[D]. Brisbane: University of Queensland, 2001.
  • 3时小虎,梁艳春,徐旭.改进的Elman模型与递归反传控制神经网络[J].软件学报,2003,14(6):1110-1119. 被引量:57
  • 4戴葵,等译.神经网络设计[M].北京:机械工业出版社,2005.
  • 5李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2006.

二级参考文献19

  • 1Senjyu T, Yokoda S, Uezato K. A study on high-efficiency drive of ultrasonic motors. Electric Power Components and Systems,2001,29(3 ): 179- 189.
  • 2Uehino K. Piezoelectric motors: Overview. Smart Materials and Structures, 1998,7(3):273-285.
  • 3Hagood NW, McFarland AJ. Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995,42(2):210--224.
  • 4Senjyu T, Miyazato H, Yokoda S, Uezato K. Speed control of ultrasonic motors using neural network. IEEE Transactions on Power Electronics, 1998,13(3):381-387.
  • 5Lin F J, Wai R3, Shyu KK, Liu TM. Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive.IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2001,48(4):900-913.
  • 6Senjyu T, Yokoda S, Uezato K. Speed control of ultrasonic motors using fuzzy neural network. Journal of Intelligent Fuzzy System,2000,8(2):135-146.
  • 7Lin F J, Wai R J, Hong CM. Recurrent neural network control for LCC-resonant ultrasonic motor drive. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000,47(3):737-749.
  • 8Elman JL. Finding structure in time. Cognitive Science, 1990,14(2):179-211.
  • 9Pham DT, Liu X. Dynamic system modeling using partially recurrent neural networks. Journal of Systems Engineering,1992,2(2):90--97.
  • 10Pham DT, Liu X. Training of Elman networks and dynamic system modeling. International Journal of Systems Science, 1996,27(2):221 -226.

共引文献88

同被引文献19

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部