期刊文献+

自适应人体运动目标精检测 被引量:1

Moving Human Body Fine Detection Based on Self-Adaptive Threshold
下载PDF
导出
摘要 现有人体检测算法普遍存在检测精度不足,适应环境能力差的缺点,为了改善这种情况,提出了一种结合区域RGB权值和自适应阈值的人体精检测算法。该算法首先通过背景差分法对前景人体目标进行快速检测,分离出近粗略人体目标区域,然后根据人体的特征将人体可能的区域范围确定,结合两次检测的区域估计出人体目标区域。将目标区域分割为若干大小相同的小块,分别对每一个小块计算RGB权值和检测阈值,并归一化到(0,255)区间,利用加权后的新值和得到的阈值通过背景差分法进行精检测,得到最终结果。实验结果表明:本文的检测算法可以比现在流行的基于HIS的人体检测算法精度提高10%左右,比普通的背景差分法检测精度最高可提高40%左右。通过实际验证,本文的算法完全满足人体检测对精度和适应性的要求。 The existing human body detecting algorithms often have the shortages,such as less precision and less adaptability of environments.In order to improve the detecting results,an optimized algorithm is presented based on the combination of the weight of RGB channel and self-adaptive threshold in sub-area.Firstly,a simply background subtraction is applied to detect the moving human body area cursorily;secondly,the human area is calculated and estimated by its characters,then the two areas are combined to get the final target area.The target area will be divided into several sub-areas with same size,and then the weight of RGB channel and the threshold of each sub-area can be calculated and normalized to the range of ,respectively.By using the calculated threshold and the weight value of target area's RGB channel,we can do a fine background subtraction to detect the final result.Experiment results show that the precision of our algorithm has improved by 10% as compared with the algorithm based on HIS,and has improved by 40% as compared with the traditional algorithms.It can wholly achieve the requirements of precision and adaptability by actually testing.
出处 《计算机系统应用》 2011年第5期162-166,共5页 Computer Systems & Applications
基金 国家高科技研究发展计划(863)(2008AA121803) 国家973计划(2009CB72400607)
关键词 运动目标检测 自适应阈值 人体检测 背景差分 moving object detection self-adaptive threshold human body detection background subtractio
  • 相关文献

参考文献9

二级参考文献72

共引文献101

同被引文献9

  • 1Poppe R. A survey on vision-based human action recognition. Image and Vision Computing, Elsevier B.V., 2010,28(6):976 -990.
  • 2Dalai N. Finding People in Images and Videos[Ph.D. Thesis]. France: the French National Institute for Research in Computer Science and Control, 2006.
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition, San Diego, CA, June 20-25, 2005.
  • 4Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2):91-110.
  • 5Porikli E Integral Histogram: A Fast Way to Extract Histograms in Cartesian Spaces. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,1(2):829-836.
  • 6Wang JYA, Adelson EH. Representing moving images with layers. IEEE Trans. on Image Processing, 1994,3(5):625- 638.
  • 7李同治,丁晓青,王生进.利用级联SVM的人体检测方法[J].中国图象图形学报,2008,13(3):566-570. 被引量:12
  • 8程广涛,陈雪,郭照庄.基于HOG特征的行人视觉检测方法[J].传感器与微系统,2011,30(7):68-70. 被引量:20
  • 9郑军,徐春广,肖定国,理华,黄卉.数字图像中照度不均匀校正技术研究[J].北京理工大学学报,2003,23(3):285-289. 被引量:19

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部