期刊文献+

基于网格和密度的数据流聚类算法

Grid and density on data stream clustering algorithm
下载PDF
导出
摘要 针对数据流的特点,提出了一种新的网格密度结合的GCTS算法.它采用了双层架构,在线层实现了网格密度参数的自设定,离线层以网格单元的重心为中心点,建立一个最大的子网格,使候选网格中的局部密集区域转化成了密集网格.最后使用最小生成树的算法生成进行聚类结果.提高了聚类效果. According to the characteristics of the data stream,his paper presented a new clustering algorithm GTCS which combined the approach based on density and grid.By means of the model of double-layer construction,the online layer set the key of densities of the data grids automatically,the offline layer using the data gravity for the center,build a maximum of subgrid,making the dense regions of the candidate grids into dense grid.In the end,it use the minimum spanning tree chlstering Algorithm to get the clustering results,improved the clustering affect.
作者 张丽 胡颖
出处 《商丘师范学院学报》 CAS 2011年第3期70-73,78,共5页 Journal of Shangqiu Normal University
关键词 数据流 聚类 子网格 data stream clustering subgrid
  • 相关文献

参考文献8

  • 1Han Jiawei, Kamber M, Fan Ming, et aL. Data Mining[ M ]. Beijing : China Mechine Press,2001.
  • 2Guha S, Mishra N. Motwani R, et al. Clustering data streams [ C ]. Proc. of FOCS ,2000.
  • 3O' Callaghan L, Mishra N. Meyerson A. et al. Streaming · data algorithms for high--quality clustering[ C ]. ICDE 2002.
  • 4Aggarwal C, Han J , Wang J. et al. A framework for clustering evolving data streams [ C ]. VLDB 2003.
  • 5Aggarwal C, Han J,Wang J, et aL. A framework for projected clustering of high dimensional data streams [ C ]. VLDB 2004.
  • 6高永梅,黄亚楼.一种基于网格和密度的数据流聚类算法[J].计算机科学,2008,35(2):134-137. 被引量:6
  • 7刘青宝,戴超凡,邓苏,张维明.基于网格的数据流聚类算法[J].计算机科学,2007,34(3):159-161. 被引量:10
  • 8Cao F, Estery M, Qian W, et al. Density -based Clustering over an Evolving Data Stream with Noise[ C ]. SDM'2006.

二级参考文献18

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2朱蔚恒,印鉴,谢益煌.基于数据流的任意形状聚类算法[J].软件学报,2006,17(3):379-387. 被引量:51
  • 3Aggarwal CC,Han J,Wang J,et al.A framework for clustering evolving data streams.In:Proc.of VLDB,2003
  • 4Aggarwal C C,Han J,Wang J,et al.A framework for projected clustering of high dimensional data streams.In:Proc.of VLDB,2004
  • 5Beringer J,Hullermeier E.Online Clustering of Parallel Data Streams.Data &-Knowledge Engineering,2005
  • 6Guha S,Meyerson A,Mishra N,et al.Clustering Data Streams:Theory and Practice.In:TKDE special issue on clustering,Vol.15,2003
  • 7Cao F,Estery M,Qian W,et al.Density-based Clustering over an Evolving Data Stream with Noise.In:Proceedings of the 2006SIAM Conference on Data Mining (SDM'2006)
  • 8Ester M,Kriegel H-P,Sander J,et al.Incremental clustering for mining in a data warehousing environment.In:Gupta A,Shmueli O,Widom J,eds.Proceedings of the 24thInternational Conference on Very Large Data Bases.New York:Morgan Kaufmann Publishers Inc,1998.323~333
  • 9Liu Qing-Bao,Deng Su,Lu Changhui,et al.Relative Density Based K-nearest Neighbors Clustering Algorithm.In:the Second International Conference on Machine Learning and Cybernetics,China,2003
  • 10Ester M,Kriegel H-P,Sander J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.In:Proc.2nd Int Conf on Knowledge Discovery and Data Mining,Portland,OR,1996.226~231

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部