期刊文献+

调制气流声源气声转换过程模型研究 被引量:4

Numerical model research for the sound energy conversion in air-modulated speaker
下载PDF
导出
摘要 为克服已有准稳态理论在高频低速条件下性能预测的偏差和在换能机理假设上的不足,同时为设计者提供预示声源结构与辐射特性之间关系的工具,提出了基于混合气动声学方法的辐射声场仿真模型,分析了典型工况下流场和声场特性,探讨了换能过程的频率相关性。内流场由瞬态可压缩雷诺时均方程描述,SSTk-ω湍流模型耦合增强壁面函数用于预测喉道壁面流动分离,动网格用于对音圈调制运动建模,FW-H积分计算近距离强声场,讨论了模型关键参数的选取原则。稳态流场计算与实验结果具有较好一致性,气动声场基频与调制频率一致,声信号存在非线性谐波失真。调制频率对换能机理有影响,高频调制下涡流和剪切层的增强使得声场预测中需考虑高阶极子源的贡献。 The numerical model of air-modulated speaker(AMS)based on the hybrid computational aero-acoustics (CAA)method is proposed to overcome quasi-steady theory limitation in high frequency and low chamber pressure conditions and provide analysis tool to relate engineering designs with characteristics in radiation field.Characteristics in both fields at typical working condition are analyzed.Frequency dependence in energy conversion process is emphasized. The internal flow of AMS is described by unsteady Reynolds-averaged Navier-Stokes(RANS)equation,shear-stress transport(SST)κ-ωturbulence model is coupled with enhanced wall treatment to predict flow separation in the vocal tract,the dynamic mesh technique is utilized for modeling of voice coil modulation,and porous Ffowcs Williams and Hawkings(FW-H)integral is used for near field acoustic calculation.Primary parameters are properly selected in compressible flow,dynamic mesh,near-wall mesh generation,boundary condition,and acoustic analogy to make unsteady flow and acoustic field accurate.Agreement in steady flow is obtained between simulation and experiment results. Predominant frequency in acoustic signal is basically consistent with modulated function,and harmonic components due to nonlinearity are evident.Compared to the low frequency case,vortex evolution and free shear layer presence make dipole and quadrupole sources unable to be neglected in corresponding acoustic field prediction.
作者 赵云 曾新吾
出处 《声学学报》 EI CSCD 北大核心 2011年第3期291-300,共10页 Acta Acustica
关键词 调制频率 过程模型 声源 k-ω湍流模型 气流 性能预测 辐射声场 雷诺时均方程 Acoustic field measurement Acoustic fields Acoustic waves Computational aeroacoustics Energy conversion Harmonic functions High pressure engineering Navier Stokes equations Shear flow Turbulence models Vortex flow
  • 相关文献

参考文献22

  • 1Shieh C M. Parallel numerical simulations of subsonic turbulent, flow-induced noise from two- and three-dimensional cavities using computational aeroacoustics. The Pennsylvania State University, 2000.
  • 2Ganesh Raman, Michael Hailye, Rice E J. The flip flop nozzle extended to supersonic flows. AIAA Journal, 1992; 31(6): 1028--1035.
  • 3Glendinning A G, Nelson P A, Elliott S J. Experiments on a compressed air loudspeaker. Journal of Sound and Vibration, 1990; 138(3): 479--491.
  • 4Roland Gunter Berndt. Actuation for rotating stall control of high speed axial compressors. Massachusetts Institute of Technolody, 1995.
  • 5Frederic Ghislain Pla. An experimental and theretical study of high-intensity, high-efficiency sirens. The Pennsylvania State University, 1987.
  • 6Meyer W A. Theoretical analysis of the performance of an air-modulated speaker. J. Acoustic. Soc. Am., 1969; 45(4): 957 -965.
  • 7Mongeau L, Franchek N, Coker C H et al. Characteristics of a pulsating jet through a small modulated orifice, with application to voice production. J. Acoustic. Soc. Am., 1997; 102(2 Pt 1): 1121--1133.
  • 8Richard S.McGowan. Aeroacoustic approach to phonation. J. Acoustic. Soc. Am., 1988; 83(2): 696--704.
  • 9Barney A, Shadle C H, Davies P O A L. Fluid flow in a dynamic mechanical model of the vocal folds and tract. I.measurements and theory. J. Acoustic. Soc. Am., 1999; 105(1): 444 -455.
  • 10Shadle C H, Barney A, Davies P O A L. Fluid flow in a dynamic mechanical model of the vocal folds and tract. II.implications for speech production stydies. J. Acoustic. Soc. Am., 1999; 105(1): 456--466.

二级参考文献15

  • 1吴建星,白春华,马雨祥.低频、强声气动发声器中阀门的设计计算及研制[J].应用声学,2006,25(1):19-23. 被引量:5
  • 2白春华,吴建星.气动阀门发声器特性分析[J].北京理工大学学报,2006,26(8):677-680. 被引量:6
  • 3Luc Mongeau, Nancy Franchek, Cecil H. Coker and Robert A. Kubli. Characteristics of a pulsating jet through a small modulated orifice, with application to voice production[J]. JASA, 1997, 102(2): 1121-1133.
  • 4W Zhao, S H Frankel, L Mongeau. Computational aeroacoustic of an axisymmetric jet in a variable area duct[J]. AIAA-01-2788, 2001.
  • 5沙海飞.用动网格模拟闸门开启过程非恒定水流特性[C].中国水利学会第二届青年科技论坛论文集.2005.
  • 6Mayer W A. Theoretical analysis of the performance of an air-modulated speaker[J]. JASA, 1969, 45(4): 957-965.
  • 7马大猷.调制气流声源的原理.物理学报,1974,23(1):17-26.
  • 8Richard S. McGowan. Aeroacoustic approach to phonation [J]. JASA, February 1988, 83(2): 696-704.
  • 9Anna Barney, Christine H. Shadle. Fluid flow in a dynamic mechanical model of the vocal folds and tract. I. Measurements and Theory[J]. JASA, 1999, 105(1): 444-455.
  • 10Christine H. Shadle, Anna Barney. Fluid flow in a dynamic mechanical model of the vocal folds and tract. II. Implications for speech production studies[J]. JASA, 1999, 105(1): 456-466.

共引文献12

同被引文献33

  • 1马联合.次声能武器[J].国防科技,2006,27(8):32-35. 被引量:4
  • 2马大猷.调制气流声源的原理.物理学报,1974,23(1):17-26.
  • 3Jauchem J R, Cook M C. High-intensity acoustics for military nonlethal applications: a lack of useful systems. Military Medicine, 2007; 172(2): 182--186.
  • 4Boesch H E, Benwell B T, Reiff C O. Design and test of a prototype acoustic high-intensity infrasonic test chamber. ARL-TR-2137, 2000:1--28.
  • 5Boesch H E, Reiff C G, Benwell B T. A high intensity infrasonic acoustic test system. ARL-TR-2349, 2001:9 -43.
  • 6Boesch H E, Reiff C G, Benwell B T. High-intensity infrasonic acoustic test system that uses a two-volume Helmholtz resonator. Journal of the Audio Engineering Society, 2001; 49(12): 1131 1147.
  • 7Cook M C, Sherry C F, Brown C G et al. Lack of effects on goal-directed behavior of high-intensity infrasound in a resonant reverberant chamber. AFRL-HE-BR-TR- 2001- 0154. 2001:5 -32.
  • 8Meyer W A. Theoretical analysis of the performance of an air-modulated speaker. The Journal of the Acoustical So- ciety of America, 1969; 45(4): 957- 965.
  • 9Lele S K. Compact finite difference schemes with spectral- like resolution. Journal of Computational Physics, 1992; 103(i): 16- 42.
  • 10Colonius T. Direct computation of aerodynamic sound. Stanford University:Dissertation Abstracts International, 1994; 55(06B): 2245.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部