期刊文献+

多层快速多极子方法的快速插值 被引量:2

FAST INTERPOLATION FOR MULTILEVEL FAST MULTIPOLE METHOD
原文传递
导出
摘要 多层快速多极子方法(MLFMM)可用来加速迭代求解由Maxwell方程组或Helmholtz方程导出的积分方程,其复杂度理论上是O(N log N),N为未知量个数.MLFMM依赖于快速计算每层的转移项,以及上聚和下推过程中的层间插值.本文引入计算类似N体问题的一维快速多极子方法(FMM1D).基于FMM1D的快速Lagrange插值算法可将转移项的计算复杂度由O(N^(1.5))降低到O(N).运用FMM1D与FFT混合的快速谱插值算法可将层间插值的计算复杂度由O(K^2)降低到O(K log K),K为插值取样点数.数值结果显示了基于这两种快速插值的MLFMM具有近似线性的时间复杂度. Multilevel fast multipole method(MLFMM)can be used to accelerate the iterative solution of integral equation deduced from Maxwell equations or Helmholtz-type equation, with a theoretical complexity ofO(N log N),where N is the number of unknowns.MLFMM depends on fast calculating the translation term at each level,and interpolations between levels during upward and downward pass phases.The one-dimentional fast multipole method (FMM1D)similar to which used in N-body problem is introduced in this paper. Fast Lagrange interpolation algorithm based on FMM1D can reduce the computing time of translation operator fromO(N^(1.5))toO(N).Fast spectrum interpolation with a hybrid FFT-FMM1D method can also reduce the computing complexity of interpolations between levels fromO(K^2)toO(K log K),where K is the number of sample points.The numerical results of MLFMM based on these two fast inperpolation methods have near linear time performances and accurate solutions.
出处 《计算数学》 CSCD 北大核心 2011年第2期145-156,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金(10972215 60873113) 国家高技术研究发展计划(2009AA01A134 2010AA012301) 国家重点基础研究发展计划(2010CB832702)资助项目
关键词 积分方程 多层快速多极子方法 转移项 快速Lagrange插值 快速谱插值 integral equation multilevel fast multipole method translation term fast Lagrange interpolation fast spectrum interpolation
  • 相关文献

参考文献12

  • 1Greengard L, Rokhlin V. A fast algorithm for particle simulations[J]. J. Comput. Phys., 1987, 73(2): 325-348.
  • 2Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions[J]. J. Comput. Phys., 1990, 86(2): 414-439.
  • 3Chew W C, Jin J M, etc., Fast and efficeint Algorithms for computational electromagnetics[M]. New York, NY: Artech House, 2001, 39-61.
  • 4Velamparambil S, Chew W C. A fast polynomial representation for the translation operators of an MLFMA[J]. Microwave and Optical Technology Letters, 2001, 28(5): 298-303.
  • 5Yarvin N, Rokhlin V. An improved fast multipole algorithm for potential fields on one-dimensional structures[J]. SIAM J. Numer. Anal., 1999, 36(2): 629-666.
  • 6Healy D, Rockmore D, etc., FFTs for the 2-sphere: improvements and variations[J]. J. Fourier Anal. Appl., 2003, 9(4): 341-385.
  • 7Dutt A, Gu M, Rokhlin V. Fast algorithms for polynomial interpolation, integration, and differentiation[J]. SIAM J. Numer. Anal., 1996, 33(55): 1689-1711.
  • 8Darve E. The fast multipole method: numerical implementation[J]. J. Comput. Phys., 2000, 160(1): 195-240.
  • 9Holmes S, Featherstone W. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions[J]. Journal of Geodesy, 2002, 76(5): 279-299.
  • 10Alpert B, Chien R. A Fast spherical filter with uniform resolution[J]. J. Comput. Phys., 1997, 136(2):580-584.

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部