期刊文献+

路网中基于预计算的跳跃式查询最近邻的算法 被引量:1

Pre-computing-based algorithm for nearest neighbors leaping query over road network
下载PDF
导出
摘要 在空间网络数据库(SNDB)中,最近邻查询(NN)在基于位置的服务(LBS)中尤为关键.现有的查询处理方法大多依赖于路网的稀疏程度,其他处理方法如UNICONS等改进了该不足,但可能存在过计算的问题.针对后者,本文提出并证明了基于非交叉点路径中的预计算理论,同时基于该理论提出一种通用的基于SNDB的NN查询处理方法,该方法通过跳跃式查询交叉点的最近邻来降低预计算的代价.通过实验,验证了本文提出的处理方法在最近邻查询中的正确性和有效性,特别是在交叉点分布稀疏的路径上,性能优势尤为明显. In Spatial Network Database( SNDB), Nearest Neighbor(NN) query is frequently used in Location-Based Services (LBS). The majority of the existing works on NN queries are largely affected by the density of objects of interest, the other processing approaches such as UNICONS overcome these problems, yet there may be over-calculating problem. To overcome the problem, we propose and proof a pre-computation theory based on non-intersection path, and then to reduce the eomputational cost, we presented a novel versatile processing approach based on leaping for searching NNs of intersection points. Experimental results show that our processing approach in the NN query is correct and effective, especially the result is well performance when the intersection points sparsely distributed.
作者 王恒
出处 《天津理工大学学报》 2011年第2期38-42,共5页 Journal of Tianjin University of Technology
基金 天津市自然科学基金(08JCYBJC12400)
关键词 空间网络数据库 最近邻查询 基于位置的服务 UNICONS 跳跃式查询 spatial network database nearest neighbor location-based services UNICONS leaping for searching
  • 相关文献

参考文献9

  • 1Nick Roussopoulos, Stephen Kelley, Frederic Vincent. Nearest Neighbor Queries[ C]//Proceedings of the 1995 ACM SIGMOD international conference on Management of data. New York: ACM Press, 1995:71-79.
  • 2Dimitris Papadias, Jun Zhang, Nikos Mamoulis, et al. Query processing in spatial network databases [ C ]//Pro- ceedings of the 29th International Conference on Very Large Data Bases (VLDB). Berlin: ACM Press, 2003 : ~02-813.
  • 3Mohammad Kolabdouzan, Cyrus Shahabl. Voronol -based K nearest neighbor search for spatial network databases [ C]//Proceedings of the 30th International Corderence on Very Large Data Bases (VLDB). Toronto: ACM Press, 2004 : 840- 851.
  • 4Huang Xuegang, Jensen Christian S, Saltenis Simonas. The Islands Approach to Nearest Neighbor Querying in Spatial Networks [ C ]//Processing of the 9th International Symposium on Spatial and Temporal Databases(SSTD). Angra dos Reis: Springer Verlag, 2005:73-90.
  • 5Cho Hyung-Ju, Chung Chin-wan. An Efficient and Scala- ble Approach to CNN Queries in a Road Network[ C]// Proceedings of 31st International Conference on Very Large Data Bases (VLDB). Trondheim: ACM Press, 2005 :865-876.
  • 6De Almeida V T, Gating R H. Using dijkstra's algorithm to incrementally find the k-nearest neighbors in spatial net- work databases [ C]//Proceedings of the 21st Annual ACM Symposium on Applied Computing. New York: ACM Press, 2006:58-62.
  • 7Samet Hanan, Sankaranarayanan Jagan, Alborzi Houman. Scalable network distance browsing in spatial databases [C]//Proceedings of the ACM International Conference on Management of Data (SIGMOD). Vancouver: ACM Press, 2008:43-54.
  • 8Demiryurek U, Banaei-Kashani F, Shahabi C. Efcient continuous nearest neighbor query in spatial networks u- sing euclidean restriction[ C]//Processing of the 11th In- ternational Symposium on Spatial and Temporal Databases (SSTD). Aalborg: Springer Verlag, 2009:25-43.
  • 9NAVTEQ. Oracle spatial sample data of NAVTEQ map content for san francisco [ EB/OL ]. ( 2010. 09. 20 ) [ 2010. 9.20 ] http ://www. nn4d. com/site/global/build/ partner_apis services/orade/p_oracle, jsp? utm_medium = email&utm_ source = peer360&utm_ campaign = NN4DNewsOct2010% 3futm_ content = DACannounce-ment.

同被引文献9

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部