期刊文献+

腮腺良性肿瘤拉曼光谱特征及诊断模型研究 被引量:4

Research on Raman spectral characters and diagnostic discriminating model of parotid benign tumors
下载PDF
导出
摘要 目的研究腮腺良性肿瘤拉曼光谱(Raman spectra)特征,并结合统计学方法建立诊断分类模型。方法收集腮腺正常组织、腮腺多形性腺瘤和Warthin瘤组织样本各20例,以785nm波长近红外激发光对样本进行拉曼光谱扫描,分析不同组织光谱的特征,应用主成分分析法(principle component analysis,PCA)与线性判别函数分析(liner discriminantan alysis,LDA)相结合的方法建立诊断分类模型。结果比较不同组织的平均拉曼光谱,腮腺多形性腺瘤较腮腺正常组织在蛋白质、核酸和脂类的峰位谱峰增强,Warthin瘤在蛋白质和核酸峰位的谱峰较正常增高,而脂类峰位谱峰明显降低。通过PCA-LDA建立诊断分类模型,其总体分类准确率达90%以上。结论腮腺正常组织、多形性腺瘤与Warthin瘤组织的拉曼光谱存在差异,通过PCA-LDA建立诊断分类模型,可以鉴别区分3者。 OBJECTIVE To study the Raman spectral characters of parotid benign tumors and establish a diagnostic discriminating model.METHODS A total of 60 samples were collected from normal parotid gland, pleomorphic adenoma and Warthin's tumor.Raman spectra were gained by Raman microscope with a 785nm excitation.PCA-LDA was used to establish the diagnostic model for discrimination of these spectra. RESULTS There were significant differences among the mean Raman spectra of these 3 kinds of samples. The mean spectrum of pleomorphic adenoma showed strong peaks contributed to excess nucleic acids,proteins and lipids,and the mean spectrum of Warthin's Tumor showed strong peaks contributed to nucleic acids and proteins but weak peaks contributed to lipids.Through the discrimination model established by PCA-LDA,the total accuracy reached over 90%.CONCLUSION There were differences existing in the Raman spectra of different tissues,and the diagnostic model could discriminate the one from the others with a high accuracy.
出处 《中国耳鼻咽喉头颈外科》 北大核心 2011年第3期121-124,共4页 Chinese Archives of Otolaryngology-Head and Neck Surgery
基金 医学光电科学与技术教育部重点实验室(福建师范大学)开放基金资助项目(JYG0101)
关键词 腮腺 腺瘤 多形性 光谱分析 拉曼 腺淋巴瘤 诊断 Parotid Gland Adenoma Pleomorphic Spectrum Analysis Raman Adenolympho ma Diagnosis
  • 相关文献

参考文献13

  • 1Li L J, Li Y, Wen YM, et al. Clinical analysis of salivary gland tumor cases in West China in past 50 years. Oral Oncol, 2008, 44: 187-192.
  • 2Wills H, Kast R, Stewart C, et al. Diagnosis of Wilms' tumor using near-infrared Raman spectroscopy. J PediatrSurg, 2009, 44: 1151-1158.
  • 3Short KW, Carpenter S, Freyer JP, et al. Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. Biophys J, 2005, 88: 4274-4288.
  • 4Kast RE, Serhatkulu GK, CaoA, et al. Raman spectroscopy can differentiate malignant tumors from breast tissue and detect early neoplastic changes in a mouse model. Biopolymers, 2008, 89: 235-241.
  • 5李一,文志宁,李龙江,李梦龙,张壮,高宁.口腔鳞状细胞癌近红外拉曼光谱特征及其诊断价值研究[J].华西口腔医学杂志,2010,28(1):61-64. 被引量:15
  • 6Zhao J, Lui H, McLean DI, et al. Automated autoflurescence background substraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc, 2007, 61: 1225-1232.
  • 7Chan JW, Taylor DS, Zwerdling T, et al. Micro-Raman spectroscopy detects individual neoplastic and normal hematopoieticcells. Biophys J, 2006, 90: 648-656.
  • 8Krishna CM, Sockalingum GD, Bhat RA, et al. FTIR and Raman microspectroscopy of normal, benign, and malignant formalin-fixed ovarian tissues. Anal Bioanal Chem, 2007, 387: 1649-1656.
  • 9Yu C, Gestl E, Eckert K, et al. Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer DetectPrev, 2006, 30: 515-522.
  • 10Krishna CM, Sockalingum GD, Kurien J, et al. Micro- Raman spectroscopy for optical pathology of oral squamous cell carcinoma. ApplSpectrosc, 2004, 58: 1128-1135.

二级参考文献10

  • 1Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: Globocan 2000[J]. Int J Cancer, 2001, 94(2): 153-156.
  • 2Brown AE, Langdon JD. Management of oral cancer[J]. Ann R Coll Surg Engl, 1995, 77 (6):404-408.
  • 3Krafft C. Bioanalytical applications Of Raman spectroscopy[J]. Anal Bioanal Chem, 2004, 378(1):60-62.
  • 4Krishna CM, Sockalingum GD, Bhat RA, et al. FTIR and Raman microspectroscopy of normal, benign, and malignant formalinfixed ovarian tissues[J]. Anal Bioanal Chem, 2007, 387 (5): 1649- 1656.
  • 5Kumar KK, Anand A, Chowdary MV, et al. Discrimination of normal and malignant stomach mucosal tissues by Raman spectroscopy: A pilot study[J]. Vib Spectrosc, 2007, 44(2):382-387.
  • 6Lyng FM, Faolain EO, Conroy J, et al. Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool[J]. Exp Mol Pathol, 2007, 82(2):121-129.
  • 7Rehman S, Movasaghi Z, Tucker ,AT, et al. Raman spectroscopic analysis of breast cancer tissues: Identifying differences between normal, invasive ductal carcinoma and ductal carcinoma in situ of the breast tissue[J]. J Raman Spectrosc, 2007, 38:1345-1351.
  • 8Leon B, John WE, Peter R, et al. The World Health Organization's histological classification of tumors[M]. Lyon: IACR Press, 2005: 191-212.
  • 9Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme[J]. Biochim Biophys Acta, 1975, 405(2) :442-451.
  • 10Novic M, Zupan J. Investigation of infrared spectra-structure correlation using kohonen and counterpropagation neural net work [J]. J Chem Inf Comput Sci, 1995, 35:454-466.

共引文献14

同被引文献42

  • 1吴翠翠,刘凌波,李蕾,肖娟,邹萍.急性单核细胞白血病M5a和M5b亚型的免疫表型及临床特征比较分析[J].中国医师杂志,2005,7(8):1129-1130. 被引量:1
  • 2李曙霞,于世凤.口腔癌前病变癌变机理研究进展—上皮—结缔组织相互作用在口腔粘膜癌变中的作用[J].现代口腔医学杂志,2005,19(5):525-527. 被引量:4
  • 3Bloch K j, Buchanan WW, Wohl M J, el ill, Sjtegren's syndrome. A clinical, pathological, and serological stud.x of sixty- lu,,o c,tses. Medicine ( Bahimore ), 1965,44 : 187-231.
  • 4Garcia-Carrasco M, Fuentes-Alexandro S, EscOrcega RO, el al. Pathophysiology of Sjgren's syndrome. Arch Med Res, 2006, 37 ( 8) :921-932.
  • 5Yamamoto K. Pathogenesis of Sji-gren syndrome. Autoimmun Rev,2003,2( 1 ) :13-18.
  • 6Calvez J, S(tiz E, 1,6pez P, el al.Diagnosti e',aluation and elassific'ation crileria in Sjigren' s s?'ndlvme. Join Bone Spine, 2009,76( 1 ) :44-49.
  • 7Tzioufas AG, Voulgarelis M. Update on SjSgren's syndrome autoimnmne epithelitis : ti'om classification to increased neoplasias. Best Pratt Res Clin lthemnatol, 2007, 21 ( 6 ) : 989-1010.
  • 8l,angennan A J, Blair EA, Sweiss N J, et al. Utility of lip biops) in the diagnosis ar, d treatment of Sj(gren's syndrome. Laryngoscope, 2007,117(6) :1004-1008.
  • 9Yah B, Li Y, Yang G, el al. Discrimination of parolid neoplasms from the normal prolid gland by use of Raman spectroscopy and supporl veqor mat'hine. Oral Oneol,2011,47 (5) :430-435.
  • 10I,i Y, Wen ZN, Li al, et al. Research on the Raman spectralcharacter and diagnostic value of squamous cell carcinoma of oral mucosa. J Raman Spectrosc, 2010, 41:142-147.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部