期刊文献+

Numerical Blow-up for a Nonlinear Heat Equation

Numerical Blow-up for a Nonlinear Heat Equation
原文传递
导出
摘要 This paper concerns the study of the numerical approximation for the following initialboundary value problem{ut-uzx=f(u),t∈(0,1),t∈(0,T) u(0,t)=0,t∈(0,1),t∈(0,T) u(x,0)=u0(x),x∈(0,1)where f(s) is a positive, increasing, C1 convex function for the nonnegative values of s, f(0) 〉0, f∞ds/f(s) 〈∞, u0∈C1([0, 1]), u0(0) = 0, u'0(1)=0. We find some conditions under which the solution of a semidiscrete form of the above problem blows up in a finite time and estimate its semidiserete blow-up time. We also prove the convergence of the semidiscrete blow-up time to the theoretical one. A similar study has been also undertaken for a discrete form of the above problem. Finally, we give some numerical results to illustrate our analysis. This paper concerns the study of the numerical approximation for the following initialboundary value problem{ut-uzx=f(u),t∈(0,1),t∈(0,T) u(0,t)=0,t∈(0,1),t∈(0,T) u(x,0)=u0(x),x∈(0,1)where f(s) is a positive, increasing, C1 convex function for the nonnegative values of s, f(0) 〉0, f∞ds/f(s) 〈∞, u0∈C1([0, 1]), u0(0) = 0, u'0(1)=0. We find some conditions under which the solution of a semidiscrete form of the above problem blows up in a finite time and estimate its semidiserete blow-up time. We also prove the convergence of the semidiscrete blow-up time to the theoretical one. A similar study has been also undertaken for a discrete form of the above problem. Finally, we give some numerical results to illustrate our analysis.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第5期845-862,共18页 数学学报(英文版)
关键词 SEMIDISCRETIZATION BLOW-UP numerical blow-up time nonlinear heat equations Semidiscretization, blow-up, numerical blow-up time, nonlinear heat equations
  • 相关文献

参考文献2

二级参考文献41

  • 1Lasiecka, I.: Uniform stabilizability of a full von Kaman system with nonlinear boundary feedback. SIAM J. Control Optim., 36, 1376-1422 (1998).
  • 2Lasiecka, I.: Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity. Appl. Anal., 68, 121-145 (1998).
  • 3Lasiecka, I.: Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation. Commun. Partial Differential Equations, 24, 1801-1847 (1999).
  • 4Munoz, J. E., Menzala, G. P.: Uniform rates of decay for full von Karman systems of dynamic viscoelasticity with memory. Asymptotic Anal., 27, 335-357 (2001).
  • 5Puel, J., Tucsnak, M.: Boundary stabilization for the von Kaman equations. SIAM J. Control., 33, 255-273 (1996).
  • 6Rivera, J. E., Menzala, G. P.: Decay rates of solutions to a von Kaman system for viscoelastic plates with memory. Quart. Appl. Math., LⅦ, 181-200 (1999).
  • 7Rivera, J. E., Menzala, G. P.: Uniform rates of decay for full von Kaman systems of dynamic viscoelasticity with memory. Asymptotic Analysis, 27, 335 357 (2001).
  • 8Iosifescu, O. A.: Comportement de la solution des modules non lineaires bidimensionnels de coque faiblement courbee de W. T. Koiter et de Marguerre-von Karman lorsque la coque devient une plaque. C. R. Acad. Sci. Paris, Ser. Ⅰ, 321, 1389-1394 (1995).
  • 9Rao, B. PI: Marguerre-von Karman equations and membrane model. Nonlinear Anal., Theory Methods Appl., 24, 1131-1140 (1995).
  • 10Menzala, G. P., Zuazua, E.: Timoshenko's plate equation as a singular limit of the dynamical von Karman System. J. Math. Pures Appl., 79, 73-94 (2000).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部