期刊文献+

蛋白质二级结构的协同训练预测方法 被引量:1

Protein secondary structure co-training prediction method
下载PDF
导出
摘要 针对蛋白质二级结构机器学习预测方法,忽略氨基酸疏水性特征以及氨基酸之间的长程作用和准确率不高的现状,进行了比较实验分析。采用氨基酸对应的疏水能值替换蛋白质中相应的氨基酸,得到疏水能值的序列。实验结果表明,用长的疏水能值序列训练BP网络,对长程作用起主导的E结构的预测效果好。由于Pro-file编码特征和疏水能值特征是独立的冗余视图,基于协同训练思想,提出Co-training算法。该算法的主要步骤是在Profile特征空间训练SVM分类器,在疏水性特征空间训练BP神经网络分类器,协同对氨基酸二级结构进行预测;SVM分类器和BP分类器有分歧的样本,基于主动选择思想,分析分类器以及特征空间的特点,定义质疑样例和可信样例,给予两个分类器不同的优先级进行仲裁。实验表明,Co-training方法有较高的准确性,对短程起主导的E结构和长程起主导的H结构预测准确率都有所提高。 Machine learning based protein secondary structure prediction methods suffered low prediction accuracy because they ignored the amino acid hydrophobic property and the interaction between far away amino acids.In order to solve this problem,comparative experiments had been done.A sequence of hydrophobic value could be build by replacing the amino acid by its hydrophobic value.Experiments show that the BP neural network using long amino hydrophobic value sequence works well in prediction of E structure which is controlled mainly by long amino acid-amino acid interaction.Because both the Profile space and the hydrophobic energy value space were sufficient and redundant views,this paper proposed a Co-training algorithm.In the proposed algorithm,there were two classifiers.One was SVM classifier trained in Profile space,and the other was BP neural network classifier trained in hydrophobic value space,and they predicted one amino acid secondary structure independently.If these two classifiers had different prediction results with one amino acid,an arbitration rule proposed was employed to make the final decision which was based on an active selecting strategy.Suspected sample and creditable sample were defined according to the characteristics of the classifiers and spaces to arbitrate the controversial prediction results.The experimental results show that the proposed algorithm has higher prediction accuracy both in E structure which controlled mainly by long interaction and H structure which controlled mainly by short interaction than existing algorithms.
出处 《计算机应用研究》 CSCD 北大核心 2011年第5期1688-1691,共4页 Application Research of Computers
基金 中国博士后科学基金资助项目(20070420711) 重庆市科委自然科学基金资助项目(2007BB2372)
关键词 协同训练 蛋白质 二级结构预测 支持向量机 神经网络 co-training protein secondary structure prediction SVM(support vector machine) neural network
  • 相关文献

参考文献8

  • 1董启文,王晓龙,林磊,关毅,赵健.蛋白质二级结构预测:基于词条的最大熵马尔科夫方法[J].中国科学(C辑),2005,35(1):87-96. 被引量:3
  • 2CULP M, MICHAILIDIS G. A Co-training algorithm for multi-view data with applications in data fusion [J]. Ghemometries, 2009,23 (8) :294-303.
  • 3TONG S, CHANG E. Support vector machine active learning for image retrieval [ C ]//Proc of the 9th ACM International Conferece on Multimedia. New York : ACM Press, 2001 : 107-118.
  • 4CHENG Jian, WANG Kong-qiao. Active learning for image retrieval with Co-SVM[J]. Pattern Recognition ,2007,40( 1 ) :330-334.
  • 5吴晓明,王波,程敬之.基于小波分析法的蛋白质结构研究[J].西安交通大学学报,2002,36(4):414-417. 被引量:4
  • 6CARAGEA C, CARAGEA D, SILVESCU A, et al. Semi-supervised prediction of protein subcellular localization using abstrction augmented Markov models [ J ]. BMC Bioinformatics, 2010,11 ( 8 ) : 1471- 2105.
  • 7JI Rong-rong, YAO Hong-xun, WANG Ji-cheng, et al. Clustering-based subspace SVM ensemble for relevance feedback learning [C]// Proc of IEEE International Conference on Multimedia Computing and Systems and Expo. 2008 : 1221-1224.
  • 8QIN Tao, ZHANG Xu-dong, LIU Tie-yah, et al. An active feedback framework for image retrieval [J]. Pattern Recognition Letters, 2008,29 (5) :637-696.

二级参考文献46

  • 1胡红雨,杜雨苍,鲁子贤.二级结构形成:蛋白质折叠起始过程的框架模型[J].生物化学与生物物理进展,1994,21(6):508-513. 被引量:8
  • 2孙之荣,饶晓谦.用人工神经网络方法预测蛋白质超二级结构[J].生物物理学报,1995,11(4):570-574. 被引量:11
  • 3李晓琴,罗辽复.用信息聚类方法研究蛋白质的氨基酸组成和二级结构含量的关系[J].内蒙古大学学报(自然科学版),1997,28(1):41-47. 被引量:5
  • 4王琳芳 杨克恭.蛋白质与核酸[M].北京:北京医科大学中国协和医科大学联合出版社,1999..
  • 5郝柏林.理论物理与生命科学[M].上海科学技术出版社,1999,9..
  • 6Frishman D, Argos P. Knowledge-based secondary structure assignment. Proteins: Struc Funct Genet, 1995, 23(4): 566~579
  • 7Richards F M, Kundrot C E. Identification of structural motifs from protein coordinate data: secondary structure and first-level super-secondary structure. Proteins: Struc Funct Genet, 1988, 3(2): 71~84
  • 8James A C, Geoffrey J B. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins: Struc Funct Genet, 1999, 34(4): 508~519
  • 9Zemla A, Venclovas C, Fidelis K, et al. A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins: Struc Funct Genet, 1999, 34(2): 220~223
  • 10Rost B, Sander C, Schneider R. Redefining the goals of protein secondary structure prediction. J Mol Biol, 1994, 235(1): 13~26

共引文献5

同被引文献12

  • 1李华雄,周献中,李天瑞,等.决策粗糙集理论及其研究进展[M].北京:科学出版社,2011.
  • 2BLUM A,MITCHELL T.Combining labeled and unlabeled data withco-training[C]//Proc of the Ilth Annual Conference on Computa-tional Learning Theory.New York; ACM Press,1998:92-100.
  • 3NIGAM K,GHANI R.Analyzing the effectiveness and applicability ofco-training[C]//Proc of the 9th ACM International Conference onInformation and Knowledge Management.New York:ACM Press,2000:86-93.
  • 4FEGER F,KOPRINSKA I.Co-training using RBF nets and differentfeature splits[C]//Proc of International Joint Conference on NeuralNetworks.2006:1878-1885.
  • 5SALAHELDIN A,E1 GAYAR N.New feature splitting criteria for co-training using genetic algorithm optimization[C]//Proc of the 9th In-ternational Conference on Multiple Classifier Systems.Berlin:Springer-Verlag,2010:22-32.
  • 6YASLAN Y,CATALTEPE Z.Co-training with relevant random sub-spaces[J].Neurocomputing,2010,73(10-12):1652-1661.
  • 7ZHOU Zhi-hua,LI Ming.Tri-training:exploiting unlabeled data usingthree classifiers[J].IEEE Trans on Knowledge and Data Engi-neering,2005,17(11):1529-1541.
  • 8LI Ming,ZHOU Zhi-hua.Improve computer-aided diagnosis with ma-chine learning techniques using undiagnosed samples[J].IEEETrans on Systems,Man and Cybernetics,Part A:System andHumans,2007,37(6):1088-1098.
  • 9唐焕玲,林正奎,鲁明羽,邬俊.一种结合独立性模型与差异评估的Co-Training改进方案[J].计算机研究与发展,2008,45(11):1874-1881. 被引量:7
  • 10王娇,罗四维,曾宪华.基于随机子空间的半监督协同训练算法[J].电子学报,2008,36(B12):60-65. 被引量:14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部