期刊文献+

基于改进的多目标进化算法的飞行控制系统优化 被引量:6

Optimization of aircraft flight control system based on improved multi-objective evolutionary algorithm
下载PDF
导出
摘要 针对在传统飞行控制系统控制器参数整定问题中单目标优化不能同时满足多个控制指标要求的缺点,提出了一种基于改进的NSGA-II算法的多目标进化算法。在改进的NSGA-II算法中,提出了改进的精英保留策略增强算法收敛性;同时,使用改进的自适应模拟二进制(ASBX)算子提高算法效率,提出了使用改进的基于混沌序列的变异算子避免算法陷入局部最优解,以提高算法搜索精度。将改进的算法应用于飞机飞行控制系统设计中。仿真结果表明,该进化算法能够快速有效地进行飞行控制系统参数整定。 In the traditional optimization of tuning the flight control system(FCS) parameters,it is difficult to use the single object to optimal the many objects in the same time.To solve such problem,an improved NSGA-Ⅱ algorithm was proposed based on the multi-objective evolutionary optimization algorithm.In the improved NSGA-Ⅱ algorithm,presented a new elitism reserve strategy to enhance the convergence speed.Moreover,adopted a modified adaptive simulated binary crossover(ASBX) operator to increase the computational efficiency of the algorithm.And utilized the mutating operator based on the chaos sequence to avoid the chromosomes being trapped into local convergence,which could improve the precision in the searching process.Finally,applied the improved algorithm in the designing of the flight control system.The simulation result shows that the algorithm of this paper adopted can tone the parameters of the FCS rapidly.
出处 《计算机应用研究》 CSCD 北大核心 2011年第5期1703-1706,共4页 Application Research of Computers
基金 航空科学基金资助项目(20090753008)
关键词 飞行控制系统 多目标进化算法 NSGA-II 精英保留策略 混沌序列 FCS multi-objective evolutionary algorithm NSGA-II elitism reserve strategy chaos sequence
  • 相关文献

参考文献6

二级参考文献15

  • 1刘西全,江国和,杨松林.基于遗传算法的船舶柴油机转速控制系统仿真研究[J].华东船舶工业学院学报,2005,19(2):10-14. 被引量:6
  • 2杨智,朱海锋,黄以华.PID控制器设计与参数整定方法综述[J].化工自动化及仪表,2005,32(5):1-7. 被引量:191
  • 3郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 4DEB K,PRATAP A,ARGRAWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA Ⅱ[J].IEEE Trans.Evolutionary Computation,2002,6(2):182-197.
  • 5HWANG C L,YOON K.Multiple Attribute Decision Making-Methods and Applications.A State-of-art Survey[M].NewYork:Springer-Verlag,1981.
  • 6Astrom K J,Hagglund T. The future of PID control[J]. Control Engineering Practice, 2001,9 (11) : 1163-1175.
  • 7Wang P, Kwok D P. Auto-tuning of classical PID controllers using an advanced genetic algorithm [A].Proc IEEE Int Conf on Power Electronics and Motion Control[C]. San Diego, 1992.1224-1229.
  • 8Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth, 1995:1942-1948.
  • 9Eberhart R,Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C]. Nagoya, 1995.. 39-43.
  • 10Shi Yuhui, Eberhart R. Modified particle swarm optimizer[A]. Proc 1EEE Int Conf on Evolutionary Computation[C]. Anchorage, 1998:69-73.

共引文献483

同被引文献27

  • 1刘家学,吕继兴.基于进化策略的飞行器纵向控制律设计[J].控制工程,2009,16(S3):92-94. 被引量:2
  • 2张平,杨新颖,陈宗基.大飞行包线控制律的神经网络调参设计[J].北京航空航天大学学报,2005,31(6):604-608. 被引量:9
  • 3李广文,章卫国,李建,刘小雄.基于粒子群算法的飞行控制系统参数优化[J].弹箭与制导学报,2006,26(4):79-81. 被引量:5
  • 4申晓宁,郭毓,陈庆伟,胡维礼.一种子群体个数动态变化的多目标优化协同进化算法[J].控制与决策,2007,22(9):1011-1016. 被引量:13
  • 5S Chao, et al. Multi-objective flight controller design for an air- plane with multiple operating points [ C ]. New Jersey: Institute of Electrical and Electronics Engineers Inc, 2008:608-613.
  • 6K D, S A, A P. A Fast Elitist Non-Domina 2ted Sorting Genetic Algorithm for Multi-Objective Optimization:NSGA2 II[C]. Paris, France : 2000.
  • 7K Deb, et al. A fast and elitist muhiobjective genetic algorithm: NSGA-II[J]. Evolutionary Computation, IEEE Transactions on. 2002,6(2) :182-197.
  • 8Chao shen, Dimirovski G M, Yuanwei Jing, et al.Muhi- Objective Flight Controller Design for an Air-plane with Multiple Operating Points [ C ]. New Jersey: Institute of E- lectrical and Electronics Engineers Inc, 2008: 608-613.
  • 9Tc比施根斯.干线飞机空气动力学和飞行力学[M].北京:航空工业出版社,1996.
  • 10Shen Chao, Dimirovski Georgi M, Jing Yuanwei, et al. Multi- objective Flight Controller Design for an Air- plane with Mul- tiple Operating Points [ C ]. New Jersey: Institute of Electrical and Electronics Engineers Inc,2008:608 -613.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部