期刊文献+

分布式计算平台中混合多应用调度策略的研究 被引量:1

Research of mix multi-application scheduling policies in distributed computing platform
下载PDF
导出
摘要 提出与分析了分布式计算平台中几种混合多应用的调度策略,它主要面向多个并行应用之间的调度而不是应用内部的调度,应用内部的调度采用了常见的工作队列容错调度算法。与资源信息有关的调度比较起来,这些调度策略运用到了与资源信息无关的调度方式,这使它们的实现更加简单和容易,更加适合于高挥发性的分布式计算系统。针对各种不同的计算强度、资源可用性、任务粒度来划分实验场景,对各种调度策略进行了评测与比较。实验结果表明,这些调度策略各有优缺点,可以作为评估大规模分布式计算环境下的并行分布式应用的有效策略。 This paper proposed and discussed a set of scheduling algorithms which were able to deal with mix multi-applications in distributed computing platform.It was to deal the problem of scheduling a set of competing parallel applications that were submitted for execution on a distributed computing platform by a community of potentially distinct users.These policies followed a knowledge-free approach that was no information concerning the resources or the applications was available to the scheduler.By means of a large set of operational scenarios obtained by combining four different volunteer computing configurations with various application workloads and intensity,evaluated and discussed the performance of these algorithms.The results show that,although there is no a clear winner among the proposed solutions,all the scheduling policies can be a feasible approach for evaluating parallel applications in large scale distributed computing platform.
作者 覃德泽
出处 《计算机应用研究》 CSCD 北大核心 2011年第5期1850-1853,共4页 Application Research of Computers
基金 广西教育厅资助项目(200911MS250)
关键词 分布式计算 混合多应用 任务调度 网格计算 通信轮回时间 distributed computing mix multi-application task scheduling grid computing turnaround time
  • 相关文献

参考文献19

  • 1中国分布式计算总站[S/OL].(2010-08-24).http://www.equn.com/index.phpl.
  • 2SHODO K, TANAKA Y, SEK1GUCHI S. P3: P2P-based middleware enabling transfer and aggregation of computational resources [ C ]// Proc of IEEE Internationat Symposium on Cluster Computing and the Grid. 2005:259-266.
  • 3ANDRADE N, COSTA L, GERMOGLIO G, et al. Peer-to-peer grid computing with the ourgrid community [ C ]//Proc of SBRC. 2005.
  • 4ANGLANO C, CANONICO M, GUAZZONE M, et al. Peer-to-peer desktop grids in the real world : the share grid project [ C ]//Proc of the 8th IEEE International Symposium on Cluster Computing and the Grid. 2008:621 - 626.
  • 5PATOLI Z,GKION M,Al-BARAKATI A,et al. How to build an open source render farm based on desktop grid computing[ C]//Proc of Wireless Networks Information Processing and Systems. 2008:268- 278.
  • 6PETROU D, GIBSON G, GANGER G. Scheduling speculative tasks in a compute farm [ C ]//Proc of ACM/IEEE Conference on Supercomputing. 2005 : 37- 48.
  • 7CHOI S,KIM H,BYUN E,et al. Characterizing and classifying desktop grid[ Cl//Proc of the 7th IEEE International Symposium on Cluster Computing and the Grid. 2007:743-748.
  • 8KONDO D, CHIEN A A, CASANOV H. Resource management for rapid application turnaround on enterprise desktop grids [ C ]//Proc of the 2004 ACM/IEEE Conference on Supercomputing. Washington DC : IEEE Computer Society ,2004 : 17.
  • 9CfRNE W, BRASILEIRO F, SAUVE J, et al. Grid computing for bag of tasks applications [ C ]//Proc of the 3rd IFIP Conference on E- Commerce, E-Business and E-Government. 2003.
  • 10ANGLANO C, BREVIK J, CANONICO M, et al. Fault-aware scheduling for bag-of-tasks applications on desktop grids [ C ]//Proc of the 7th IEEE/ACM International Conference on Grid Computing. 2006.

同被引文献11

  • 1DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters [ C]// Communications of the ACM, 2008, 51 (1): 107-113.
  • 2JIANG DAWEI, OOI B C, SHI LEI, et al. The performance of Ma- pReduce: an in-depth study [ J]. Proceedings of the VLDB Endow- ment, 2010, 3(1/2): 472-483.
  • 3ZAHARIA M, KONWINSKI A, JOSEPH A D, et al. Improving MapReduce performance in heterogeneous environments [ C]//Pro- ceedings of the 8th USENIX Conference on Operating Systems De- sign and Implementation. Berkeley, CA: USENIX Association, 2008:29-42.
  • 4The Apache Software Foundation. Hadoop [ EB/OL]. [ 2011 - 10 - 04]. http://lucene, apache, org/hadoop.
  • 5Amazon. Amazon elastic compute cloud [ EB/OL]. [ 2012 -01 -12]. http://aws, amazon, com/ec2.
  • 6LIU YANG, LI MAOZHEN, ALHAM N K, et al. Load balancing in MapReduce environments for data intensive applications [ C]//Pro- ceedings of the Eighth Intemational Conference on Fuzzy Systems and Knowledge Discovery. Piscataway: IEEE, 2011 : 2675 - 2678.
  • 7Yahoo! Inc. Yahoo! launches world's largest Hadoop production ap- plication [ EB/OL]. [2011 - 11 - 10]. http://tinyurh corn/ 2hgzv7.
  • 8陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1312
  • 9陈全,邓倩妮.云计算及其关键技术[J].计算机应用,2009,29(9):2562-2567. 被引量:934
  • 10吴吉义,平玲娣,潘雪增,李卓.云计算:从概念到平台[J].电信科学,2009,25(12):23-30. 被引量:192

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部