期刊文献+

一种非线性降维算法在组合预测模型中的应用 被引量:1

Application of nonlinear dimensional reduction algorithm in combination predictive model
下载PDF
导出
摘要 针对视频序列维数高、帧间相关性大、运动轨迹复杂的特点,将LLE非线性降维算法用于视频处理,并重点研究了如何利用该算法对目标跟踪过程中的模板进行预测更新。由于单步预测方法在运动目标发生部分或全部遮挡时无法保证跟踪的准确性,进一步将时间序列模型与BP网络相结合实现跟踪目标的多步预测,从而可以弥补时间序列模型在单步预测方面的不足。实验证明,该算法能保证在运动目标跟踪过程中的准确性和鲁棒性。 Aiming at the features of video sequences,i.e.,the higher dimension,larger relativity of frame,and complex trajectories,this paper proposed applying the reduction algorithm of LLE nonlinear dimensionality to video processing.In particularly,this paper focused on how to utilize the above algorithm to predictively update the model of moving objective tracking.Because the single-step prediction could not guarantee the accuracy in the complex environment with part or the whole hided,this paper integrated the time series model with BP neural network to achieve multi-step prediction,which could overcome the shortcoming of time series model.The experiment results show that this proposed method can attain better accuracy and robustness for moving object tracking.
出处 《计算机应用研究》 CSCD 北大核心 2011年第5期1961-1964,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61074041) 上海市教委科技创新重点资助项目(09ZZ60) 上海市重点学科资助项目(B504)
关键词 局部线性嵌入降维算法 时间序列模型 反向传播神经网络 多步预测 LLE algorithm time series model BP neural network multi-step prediction
  • 相关文献

参考文献6

  • 1ZHOU Cui-hong, YANG Ge-lan. Research of face recognition based on locally linear embedding [ C ]//Proc of International Conference on Computer and Electrical Engineering. 2009 : 109-111.
  • 2HAN Tian, GOODENOUGH O G. Nonlinear feature extraction of hyperspectral data based on locally linear embedding[C]//Proe of Geoscience and Remote Sensing Symposium. 2005:1237-1239.
  • 3SUN Bing-yu, ZHANG Xiao-ming, LI Jiu-yong. Feature fusion using locally linear embedding for classification [ J ]. IEEE Trans on Net-works,2010,21 ( 1 ) : 163-168.
  • 4ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290 ( 5500 ) :2323- 2326.
  • 5王美玲,王念平,李晓.BP神经网络算法的改进及应用[J].计算机工程与应用,2009,45(35):47-48. 被引量:48
  • 6王行建,刘欣.ARMA时间序列模型的研究与应用[J].自动化技术与应用,2008,27(8):65-66. 被引量:22

二级参考文献8

共引文献68

同被引文献12

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部