期刊文献+

具有任意自由度的B样条非均匀细分 被引量:1

Non-uniform subdivision for B-splines of arbitrary degree
下载PDF
导出
摘要 为了便于工程实际应用,非均匀细分方法现在已经成为计算机图形学和几何建模中的热点问题。提出一种具有任意自由度的B样条非均匀细分算法,其实现与B样条均匀细分即Lane-Riesenfeld细分方法相似。该算法包含了非均匀d环结构生成的双重控制点,其中d环相似于d度均匀B样条曲线的Lane-Riesenfeld算法中均匀的d环结构。Lane-Riesenfeld算法是由B样条曲线基函数的连续卷积公式直接得出的,而本算法是blosso-ming方法的一个扩展。对于非均匀B样条曲线来说,该节点插入方法比之前的方法更简单有效。 Though Chinese engineers engaged in CAGD,this paper presented an efficient algorithm for subdividing non-uniform B-splines of arbitrary degree in a manner similar to the Lane-Riesenfeld subdivision algorithm for uniform B-splines of arbitrary degree.The algorithm discussed consists of the doubling control points followed by d rounds of non-uniform averaging similar to the d rounds of uniform averaging in the Lane-Riesenfeld algorithm for uniform B-splines of degree d.However,unlike the Lane-Riesenfeld algorithm which followed most directly from the continuous convolution formula for the uniform B-spline basis functions,the algorithm followed naturally from blossoming.For non-uniform B-splines,the result shows that the knot insertion method is simpler and more efficient than previous knot insertion algorithms.
出处 《计算机应用研究》 CSCD 北大核心 2011年第5期1972-1974,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60173055)
关键词 自由度 B样条 非均匀细分 d环 节点插入 arbitrary degree B-splines non-uniform subdivision d rounds knot insertion
  • 相关文献

参考文献8

  • 1DENG Chong-yang, YANG Xun-nian. A simple method for interpolating meshes of arbitrary topology by Catmull-Clark surfaces [J]. The Visual Computer,2010,26(2) :137-146.
  • 2CASHMAN T J, DODGSON N A, SABIN M A. Non-uniform B-spline subdivision using refine and smooth [ C ]//Proc of IMA Conference on the Mathematics of Surfaces. 2007 : 121-137.
  • 3VOUGA E G. Two blossoming proofs of the Lane-Riesenfeld algorithm [J]. Gomputing,2007,79(2-4) : 153-162.
  • 4李秀娟,廖文和,刘浩,何钢.基于流曲线曲面的双三次非均匀B样条曲面G1混合[J].中国科学院研究生院学报,2008,25(4):554-559. 被引量:4
  • 5LAI Shu-hua, CHENG Fu-hua. Similarity based interpolation using Catmull-Clark subdivision surfaces [ J ]. The Visual Gomouter, 2006,92 ( 9 ) : 565-570.
  • 6GEDDA M, SVENSSON S. Flexibility description of the MET protein stalk based on the use of non-uniform B-splines[ J]. Lecure Notes in Computer Science ,2007,46(18) : 173-180.
  • 7BECCARI C, CASCIOLA G, ROMANI L. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics [J]. Computer Aided Geometric Design ,2007,24(2) :2-9.
  • 8QIU Xia. Subdivision schemes with several geometric parameters for geometric modeling [ D ]. Changsha: Central South University, 2009.

二级参考文献11

  • 1周海,周来水.基于能量优化和细分的参数曲面混合和孔洞填充[J].中国机械工程,2004,15(17):1515-1519. 被引量:3
  • 2卢小林,马利庄,何志均.流曲线曲面的概念和构造方法[J].计算机工程,1996,22(3):26-31. 被引量:6
  • 3刘国伟.流曲线概念及造型方法[J].计算机辅助设计与图形学学报,2006,18(12):1891-1896. 被引量:6
  • 4游世辉,卿启湘,卿钧.计算机辅助流体曲面优化设计的探讨[J].湖南大学学报(自然科学版),1997,24(1):71-75. 被引量:6
  • 5Miura KT, Wang L, Cheng F. Streamline modeling with subdivision surfaces on the Gaussian sphere. Computer Aided Design, 2001, 33 : 975- 987
  • 6Suzuki Y, Miura KT. Streamline modeling based on potential flow. In.' Ninth Pacific Conference on Computer Graphics and Applications. 2001.16- 18
  • 7Miura KT, Cheng F. Fine tuning-curve and surface deformation by scaling derivations. In: Ninth Pacific Conference on Computer Graphics and Application. 2001. 150 -159
  • 8Miura KT, Sakiyama N, Kaneko T. Streamline modeling designing free-form surfaces by blending tangent vectors. In : Sixth IFIP WG5.2 Workshops on Geometric Modeling. 1998. 168- 179
  • 9Sakiyama N, Miura KT, Kaneko T, et al. Fair curve and surface design system using tangent control. In:Proceedings Pacific Graphics '98 Sixth Pacific Conference on Computer Graphics and Application. 1998.27 - 36
  • 10Miura KT. Unit quatemion integral curve: A new type of fair free-form curves. Computer Aided Geometric Design, 2000, 17:39 - 58

共引文献3

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部