期刊文献+

用态势模型预测基因表达式编程的进化难度 被引量:2

Gene Expression Programming Evolution Difficulty Prediction Based on Posture Model
下载PDF
导出
摘要 在基因表达式编程(gene expression programming,简称GEP)中,由于不同问题得到的适应度-距离相关系数(fitness-distance correlation,简称FDC)值很相近,所以难以用FDC预测GEP求解不同问题的进化难度.为了解决该问题,提出了态势模型及其区间密度指标来预测GEP的进化难度.主要工作包括:(1)提出了GEP染色体之间的距离和态势模型的新概念;(2)提出了态势模型中的区间密度指标;(3)从动力学角度证明了态势模型是对GEP原搜索空间的一种映射,并且该映射保持了种群在原搜索空间中移动的动力学性质;(4)分析了用态势模型区间密度预测GEP进化难度的合理性;(5)用实验验证了区间密度能够准确预测GEP求解问题的进化难度. Fitness Distance Correlation (FDC) can hardly predict the evolution difficulty of Gene Expression Programming (GEP) because problems with different hardness would result in very similar FDC values in GEP. To solve the problem, the authors propose a posture model and region density to predict GEP's evolution difficulty. This study made the following contributions: (1) It introduces the concepts of the chromosomes' distance and posture model in GEP; (2) It proposes region density of a posture model; (3) It proves that the posture model is a mapping from the original searching space, and the mapping preserves the population's dynamic migration property in the original searching space; (4) It demonstrates the validity of using posture model and region density to predict GEP's evolution difficulty; (5) It conducts extensive experiments to show that the new model can precisely predict the evolution difficulty of GEP.
出处 《软件学报》 EI CSCD 北大核心 2011年第5期899-913,共15页 Journal of Software
基金 国家自然科学基金(60373000) 国家科技支撑计划(2006BAI05A01) 中国博士后科学基金(20090461346) 教育部人文社会科学研究青年基金(10YJCZH117) 中央高校基本科研业务费专项资金科技创新项目(SWJTU09CX035) 成都信息工程学院引进人才项目(KYTZ201110)
关键词 基因表达式编程(GEP) 进化难度 态势模型 区间密度 空间映射 gene expression programming (GEP) evolution difficulty posture model region density space mapping
  • 相关文献

参考文献15

  • 1Candia Ferreria Gene Expression Programming Mathematical Modeling by an Artificial Intelligence. Berlin: Springer-Verlag, 2006.
  • 2Xu KK, Liu YT, Tang R, Zuo J, Zhu J, Tang CJ, A novel method for real parameter optimization based on gene expression programming. Journal of Applied Soft Computing, 2009,9(2):725-737. [doi: 10.1016/j.asoc.2008.09.007].
  • 3Zhu MF, Tang C J, Qiao S J, Dai SC,Chen Y. Genetic neutrality in naive gene expression programming. In: Wang T, ed. Proc. of the Engineering Services and Knowledge Management. Berlin: Springer-Verlag, 2008. 1-4.
  • 4Peng J, Tang CJ, Li C, Hu JJ. A new evolutionary algorithm based on chromosome hierarchy network. Int'l Journal of Computers and Applications, 2008,30(2): 1-9.
  • 5Duan L, Tang C J, Zhu J, Zuo J, Liu YT, Wu J, Dai L. The strategies of initial diversity and dynamic mutation rate for gene expression programming. In: Huan Y, ed. Proc. of the Int'l Conf. on Natural Computation 2007, Vol.4. Berlin: Springer-Verlag, 2007. 265-269. [doi: 10.1109/ICNC. 2007.748].
  • 6Kauffman S, Wrote; Li SM, Xu B, Trans. At Home in the Universe: The Search for the Laws of Self-Organization. Changsha: Hunan Science and Technology Press, 1995.
  • 7Jones T, Forrest S. Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman L, ed. Proc. of the 6th Int'l Conf. on Genetic Algorithms. San Francisco: Morgan Kaufmann Publishers, 1995.184-192.
  • 8Smith T, Husbands P, Layzell P, O'Shea M. Fitness landscapes and evolvability. Evolutionary Computation, 2002,2(2): 1-34. [doi: 10.1162/106365602317301754].
  • 9Vanneschi L, Tomassini M. A study on fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation, 2005,13(2):213-239. [doi: 10.1162/1063656054088549].
  • 10Vanneschi L, Tomassini M, Collard P, Clergue M. Fitness distance correlation in structural mutation genetic programming. Genetic Programming, 2003,5(2):455-471. [doi: 10.1007/3-540-36599-0_43].

同被引文献30

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部