摘要
为诊断三相大型电力设备的放电故障,采用数值仿真方法,研究了人工神经网络识别放电模式的能力。提出了一种任务分解的识别三相设备放电模式的神经网络组。用Monte-Carlo方法,产生不同相别、类型、发展程度的放电模拟数据,并对网络组进行训练。网络组对三相设备中的一相、两相或三相放电的识别结果表明,用这种网络组进行三相电力设备放电识别、类型、程度的分层次识别是可行的。
In order to diagnose discharge faults of 3 phases electrical power equipment the recognition ability of artificial neural networks for discharge pattern was studied through numerical simulation method.A kind of task decomposition based artificial neural network group is presented,which is suitable for discharge pattern recognition of 3 phases electrical equipment. The discharge data of different phases,types and serious levels were simulated through Monte Carlo Method and were used to train the network groups.Under circumstances of 1,2, or 3 phases discharge of 3 phases equipment the recognition results of the artificial neural network groups proved the feasibility of hierarchical recongnition to discriminate the phase discharge occurred and the different discharge types and serious levels of 3 phases electrical equipment.
出处
《电工电能新技术》
CSCD
1999年第3期1-5,共5页
Advanced Technology of Electrical Engineering and Energy
基金
国家自然科学基金
关键词
局部放电
人工神经网络
模式识别
电力设备
partial discharge, artificial neural network, pattern recognition, electrical power equipment