期刊文献+

用人工神经网络识别三相放电的数值仿真研究

STUDY ON RECOGNITION OF 3 PHASES DISCHARGE BASED ON ANN USING MONTE CARLO METHOD
下载PDF
导出
摘要 为诊断三相大型电力设备的放电故障,采用数值仿真方法,研究了人工神经网络识别放电模式的能力。提出了一种任务分解的识别三相设备放电模式的神经网络组。用Monte-Carlo方法,产生不同相别、类型、发展程度的放电模拟数据,并对网络组进行训练。网络组对三相设备中的一相、两相或三相放电的识别结果表明,用这种网络组进行三相电力设备放电识别、类型、程度的分层次识别是可行的。 In order to diagnose discharge faults of 3 phases electrical power equipment the recognition ability of artificial neural networks for discharge pattern was studied through numerical simulation method.A kind of task decomposition based artificial neural network group is presented,which is suitable for discharge pattern recognition of 3 phases electrical equipment. The discharge data of different phases,types and serious levels were simulated through Monte Carlo Method and were used to train the network groups.Under circumstances of 1,2, or 3 phases discharge of 3 phases equipment the recognition results of the artificial neural network groups proved the feasibility of hierarchical recongnition to discriminate the phase discharge occurred and the different discharge types and serious levels of 3 phases electrical equipment.
作者 王航 谈克雄
机构地区 清华大学电机系
出处 《电工电能新技术》 CSCD 1999年第3期1-5,共5页 Advanced Technology of Electrical Engineering and Energy
基金 国家自然科学基金
关键词 局部放电 人工神经网络 模式识别 电力设备 partial discharge, artificial neural network, pattern recognition, electrical power equipment
  • 相关文献

参考文献3

二级参考文献11

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部