期刊文献+

具有超收敛性的积分方程的快速泛函逼近方法

Superconvergence of Fast Multiscale Functional Approximation for Integral Equations
下载PDF
导出
摘要 主要构造第二类Fredholm积分方程的线性泛函解的具有超收敛性及高效率的快速泛函逼近框架,同时应用到小波Galerkin情形,构造快速多尺度Galerkin泛函逼近框架,并给出近似解的误差估计. In this paper,we construct a fast functional approximation frame work for the linear functional of the solution of second kind Fredholm integral equations,and we provide the theory analysis for the approximation solution.In the end,we consider the wavelet Galerkin version,leading to the fast multiscale Galerkin functional approximation.We provide that under a suitable condition the framework exhibit super-convergence properties and high efficiency.
出处 《广西师范学院学报(自然科学版)》 2011年第1期29-34,共6页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金(11061008) 广西自然科学基金(2011GXNSFA018128) 广西高校优秀人才资助计划(2010-65-39)
关键词 超收敛 泛函 配置法 多投影法 functional approximation superconvergence integral equation multi-projection method
  • 相关文献

参考文献12

  • 1ATKINSON K E. The numerical solution of integral equations of the second kind[M]. Cambridge: Cambridge University Press, 1997.
  • 2CHEN M, CHEN Z, CHEN G. Approximate solutions of operator equations[M]. Singapore: World Scienfific Publishing Co, 1997.
  • 3CHEN Z, XU Y, ZHAO J, The discrete Petrov-Galerkin method for weakly singular integral equations[J]. J Integral Equaions and Applications, 1999, 11: 1-35.
  • 4CHEN Z, XU Y. The Petrov-Galerkin and iterated petrov-Galerkin method for second kind integral equations[J]. SIAM J Numer Anal, 1998, 35:406-434.
  • 5CHEN Z, MICCHELLI C A, XU Y. Fast collocation methods for second kind integral equations[J]. SIAM J Numer Anal, 2002, 40: 344-375.
  • 6CHEN Z, LONG G, NELAKANTI G. The discrete multi-projection method for fredholm integral equations for the second kind[J]. J lntegral Equaions and Applications, to appear.
  • 7GRAHAM I G, CHANDLER G. High-order methods for linear functionals of solutions the second kind integral equations [J]. SIAM J Numer Anal, 1988, 25: 1118-1137.
  • 8GNANESHWAR N. Spectral approximation for integral operators[D]. Bombay: Indian Institute of Technology, 2003.
  • 9HEBEKER F-K, MIKA J, PACK D C. Application of the superconvergence properties of the Galerkin approximation to caluculation of upper and lower bounds for linear funetionals of solutions of integral equations[J ]. IMA J Appl Math, 1987, 38: 61-70.
  • 10LONG G, NELAKANTI G, ZHANG X. Iterated Fast Galerkin Methods for Integral Equations[J]. submitted.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部