期刊文献+

椭圆方程有限差分逼近的混合半迭代法

Hybrid Semi-iterative Methods for Solving Finite Difference Approximation to Elliptic Equation
下载PDF
导出
摘要 利用局部消元法建立了求解椭圆型方程的有限差分格式,并根据Chebyshev多项式加速技术构造了一个混合半迭代法.该算法在第一层网格上仍使用经典的Jacobi迭代法,在内层网格上使用多项式加速技术.数值实验表明,新算法比Jacobi半迭代法收敛快. A new finite difference approximation to elliptic equation is established by local elimination method in this paper,Then a hybrid semi-iterative method is designed according to Chebyshev polynomial acceleration techniques.The new algorithm used Jacobi iterative method on the first layer grid points and polynomial acceleration techniques on the inner layer grid points.Numerical experiments shows that the new algorithm has faster convergence rate then that of Jacobi semi-iterative method.
作者 刘扬 高飞
出处 《武汉理工大学学报(交通科学与工程版)》 2011年第2期409-412,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目(批准号:10647141) 湖北省自然科学基金项目(批准号:2009CBD213)资助
关键词 椭圆方程 局部消元法 有限差分 多项式加速 混合半迭代法 elliptic equation local elimination method finite difference polynomial acceleration hybrid semi-iterative method
  • 相关文献

参考文献8

  • 1Young D M. Iterative solution of large linear system [M]. New York : Academic Press. ,1971.
  • 2Young D M. lterative methods for solving partial differential equations of elliptic type[J]. Trans. Amer. Math. Soc 1954,76:92-111.
  • 3Bramble J H. Multigrid methods[M]. Harlow: Longman Group UK Limited, 1993.
  • 4Climent J J, Neumann M, Sidi A. A semi-iterative method for real spectrum singular linear systems with an arbitrary index[J]. Cornput. Appl. Math. ,1997, 87(1): 21- 38.
  • 5Eiermann M, Li X,Varga R S. On hybrid semi-iterative methods[J]. SIAM J. Numer. Anat. ,1989(26): 152-168.
  • 6Hadjidimos A, Stylianopoulos N S. Optimal semi-iterative methods for complex SOR with results from potential theory[J]. Numer. Math. , 2006,103 (4) : 591-610.
  • 7Rayes M O, Trevisan V, Wang P S. Factorization properties of chebyshev polynomials [J]. Comput.Math. Appl. , 2005,50(8):1 231-1 240.
  • 8Befforte G, Gay P, Monegato G. Some new properties of chebyshev polynomials[J].J. Compu. Appl. Math. , 2000,117(2) :175-181.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部