摘要
针对一类可化为不可逆映射系统的二阶二次差分方程,应用二维不可逆连续叠映射动力系统理论研究其动力学行为.分析该映射系统不动点的局部稳定性及其分叉,运用不可逆映射的关键集理论研究该映射系统关于有限吸引集的吸引域的全局分叉问题.
According to a class of second-order difference equations changed into noninvertible iteration map,its dynamic behavior is investigated by using two-dimensional irreversible continuous iteration mapping dynamic system theory.Firstly,thestability and the local bifurcations of the fixed points are analyzed,and then the global bifurcations of the basin of all bounded attractors for the mapping system are studied by critical set theory of irreversible iteration map.
出处
《武汉理工大学学报(交通科学与工程版)》
2011年第2期421-424,共4页
Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金
国家自然科学基金项目资助(批准号:10871209)
关键词
差分方程
动力系统
稳定性
关键集
全局分叉
difference equations
dynamical systems
stability
critical set
global bifurcation