期刊文献+

一类二阶二次差分方程的动力学分析 被引量:2

Dynamic Analysis for a Class of Second-Order Difference Equations
下载PDF
导出
摘要 针对一类可化为不可逆映射系统的二阶二次差分方程,应用二维不可逆连续叠映射动力系统理论研究其动力学行为.分析该映射系统不动点的局部稳定性及其分叉,运用不可逆映射的关键集理论研究该映射系统关于有限吸引集的吸引域的全局分叉问题. According to a class of second-order difference equations changed into noninvertible iteration map,its dynamic behavior is investigated by using two-dimensional irreversible continuous iteration mapping dynamic system theory.Firstly,thestability and the local bifurcations of the fixed points are analyzed,and then the global bifurcations of the basin of all bounded attractors for the mapping system are studied by critical set theory of irreversible iteration map.
出处 《武汉理工大学学报(交通科学与工程版)》 2011年第2期421-424,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目资助(批准号:10871209)
关键词 差分方程 动力系统 稳定性 关键集 全局分叉 difference equations dynamical systems stability critical set global bifurcation
  • 相关文献

参考文献6

  • 1Bischi G I, Kopel M. Equlihrium selection in nonlin- ear duopoly game with adaptive expections[J]. J of Economic Behavior & Organization, Z001, 46 : 73- 100.
  • 2Foroni I, Gardini L. Homoclinic bifureaion in heterogenerous market models[J]. Chaos, Solitions and Fractals, 2003,15 : 743-760.
  • 3Gu Enguo. The feasible domains and their bifurcations in an extended Logistic model with an external interference[J]. Int. J. of Bifurcation and chaos, 2007,17(3) :877-889.
  • 4Gu E G, Rung J. On some globel bifurcation of domains of feaslble trajectories: Analysls of recurrence equation[J]. Int, J, Bifurcation and Chaos, 2005, 15:1625-1639.
  • 5Gu Enguo, Huang Y B. Global bifurcations of domains of feasible trajectories: Analysis of a predatorprey model[J]. Int. J. Bifurcation and Chaos, 2006, 16(9) :2 601-2 613.
  • 6Jury E. Inners and stability of dynam'ic system[M]. New York: Wiley, 1974.

同被引文献14

  • 1汪博,孙伟,闻邦椿.高转速对电主轴系统动力学特性的影响分析[J].工程力学,2015,32(6):231-237. 被引量:3
  • 2骆天舒,王双连,郭乙木.高维动力系统在转子稳定性分析中的应用[J].浙江大学学报(工学版),2007,41(6):959-962. 被引量:2
  • 3Hirsch M W,Smale S,Devaney R L.Differential equations,dynamical system,and an introduction to chaos[M].Amsterdam:Elsevier,2005:244-245.
  • 4Foroni I,Gardini L.Homoclinic bifurcation in heterogeneous market models[J].Chaos,Solitions and Fractals,2003(15):743-760.
  • 5Gu E G.The feasible domains and their bifurcations in an extended Logistic model with an external interference[J].International Journal of Bifurcation and Chaos,2007(3):877-889.
  • 6Gu E G,Huang Y B.Global bifurcation of domains of feasible trajectories:analysis of a predator prey model[J].International Journal of Bifurcation and Chaos,2006(9):2601-2613.
  • 7Saber N E.Discrete chaos[M].New York:Chapman Hallcrc,2000:165.
  • 8Wiggins S.Introduction to applied nonlinear dynamical systems and chaos[M].New York:Springer,2000:257-262.
  • 9Yang X S.Topological horseshoes and computer assisted verification of chaotic dynamics[J].International Journal of Bifurcation and Chaos,2009(4):1127-1145.
  • 10Li Q,Yang X S.A simple way for finding topological horseshoes[J].International Journal of Bifurcation and Chaos,2010(4):467-478.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部