期刊文献+

好氧颗粒污泥与絮体活性污泥的竞争试验研究 被引量:1

Experimental research on competition between aerobic granular sludge and activated sludge flocs
下载PDF
导出
摘要 采用在序批式反应器中培养50 d的好氧颗粒污泥与同期反应器排出的絮体污泥,在高有机负荷下曝气4 h,颗粒污泥和絮体污泥MLSS较初始时分别增加了67.8%和58.5%,单位体积混合液中颗粒污泥和絮体污泥的个数分别增加了15.4%和4.8%。颗粒污泥和絮体污泥的粒径分布在4 h试验过程中处于动态稳定状态,基本保持不变。曝气4 h后颗粒污泥和絮体污泥平均粒重分别增加45.4%和51.4%,可以看出在对有机底物的竞争中,与絮体污泥相比较,颗粒污泥由于具有较高的活性而占有优势,颗粒污泥的增长速率大于絮体污泥,絮体污泥和颗粒污泥的密度均有明显增长,但颗粒污泥平均粒重增加比例小于絮体污泥。 The aerobic granular sludge that had been cultivated for 50 days in sequencing batch reactor and the sludge flocs discharged from the reactor simultaneously was aerated for 4 hours under high organic loading condition.The results showed that,the MLSS concentration of granular sludge and sludge flocs increased 67.8% and 58.5% respectively,the number of granular sludge and sludge flocs per liter of mixed liquid increased 15.4% and 4.8% respectively.During the 4-hour experiment,the particle size distribution of granular sludge and sludge flocs remained unchanged basically for dynamic stabilization.The average particle weight of granular sludge and sludge flocs increased 45.4% and 51.4% respectively after 4 hours of aeration.It could be concluded that,compared to the activated sludge flocs,aerobic granular sludge had advantage of high activity when degrading organic substrate.The growth rate of granular sludge was higher than that of sludge flocs,the density of the said two kinds of sludge both increased obviously;however,the increase rate of average particle weight of granular sludge was less than that of sludge flocs.
出处 《工业用水与废水》 CAS 2011年第2期18-21,共4页 Industrial Water & Wastewater
基金 国家自然科学基金项目(50808061) 合肥工业大学科学研究发展基金项目(No.2009HGXJ0067) 合肥工业大学2010年校级大学生创新实验计划资助(203)
关键词 好氧颗粒污泥 絮体污泥 竞争 粒径分布 平均粒重 aerobic granular sludge sludge flocs competition particle size distribution average particle weight
  • 相关文献

参考文献14

  • 1De Bruin L M M, De Kreuk M K, Van der Roest, et al. Aerobic granular sludge technology ahemative for activated sludge [J]. Water Science and Technology, 2004, 49(11-12) : 1-7.
  • 2Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors [J]. Water Research, 2004, 38(14-15) : 3389-3399.
  • 3Schwarzenbeck N, Erley R, Mc Swain B S, et al. Treatment of malting wastewater in a granular sludge sequencing batch reactor (SBR) [J]. Acta Hydrochimica Et Hydrobiologica, 2004, 32 (1) : 16-24.
  • 4Su K Z, Yu H Q. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing waste- water[J]. Environmental Science and Technology, 2005, 39(8) : 2818-2827.
  • 5Ni B J, Xie W M, Liu S G, et al. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater [J]. Water Research, 2009, 43 (3): 751-761.
  • 6De Bruin L M M, Van der Roest H F, De Kreuk M K, et al. Promising results Pilot research aerobic granular sludge technology atWWTPEde[MI. London: IWA Publishing, 2005. 135-142.
  • 7张子健,吴伟伟,王建龙.全自养硝化污泥的颗粒化过程研究[J].环境科学,2010,31(1):140-146. 被引量:16
  • 8Liu Y Q, Moy B, Kong Y H, et al. Formation, physical characteristics and microbial connnunity structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment [J]. Enzyme and Microbial Technology, 2010, 46 (6) : 520-525.
  • 9Liu Y, Wang Z W, Qin L, et al. Selection pressure-driven aerobic granulation in a sequencing batch reactor [J]. Applied Microbiology Biotechnology, 2005, 67(1) : 26-32.
  • 10De Kreuk M K, Pieioreanu C, Hosseini M, et al. Kinetic model of a granular sludge SBR: Influences on nutrient removal [J]. Biotechnology and Bioengineering, 2007, 97(4) : 801-815.

二级参考文献24

  • 1王景峰,王暄,季民,卢姗,杨造燕,李君文.好氧颗粒污泥膜生物反应器脱氮特性[J].环境科学,2007,28(3):528-533. 被引量:17
  • 2Hu L L, Wang J L, Wen X H, et al. The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules [ J ]. Process Biochem, 2005, 40( 1 ) : 5-11.
  • 3Liu Q J, Hu X, Wang J L. Performance characteristics of nitrogen removal in SBR by aerobic granules [J]. Chinese J Chem Eng, 2005, 13(5): 669-672.
  • 4Debeer D, Vandenheuvcl J C, Ottengraf S P P. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates [J]. Appl Environ Microbiol, 1993, 59(2) : 573-579.
  • 5Tsuneda S, Nagano T, Hoshino T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor [ J ]. Water Res, 2003, 37 (20) : 4965-4973.
  • 6Tsuneda S, Ejiri Y, Nagano T, et al. Formation mechanism of nitrifying granules observed in an aerobic upflow fluidized bed (AUFB) reactor [J]. Water Sci Technol, 2004, 49(11-12) : 27-34.
  • 7Tokutoral T. Operation of a nitrite-type airlift reactor at low DO concentration [J]. Water Sci Technol, 2004, 49(5-6) : 81-88.
  • 8Tijhuis L, Huisman J L, Hekkelman H D, et al. Formation of nitrifying biofilms on small suspended particles in airlift reactors [J]. Biotechnol Bioeng, 1995,47(5) : 585-595.
  • 9Van Benthum W A J, GarridoFemandez J M, Tijhuis L, et al. Formation and detachment of biofilms and granules in a nitrifying biofilm airlift suspension reactor [J]. Biotechnol Pro, 1996, 12(6) : 764-772.
  • 10Weber S D, Ludwig W, Schleifer K H, et al. Microbial composition and structure of aerobic granular sewage biofil.ms [J]. Appl Environ Microbiol, 2007, 73: 6233-6240.

共引文献400

同被引文献23

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部