摘要
令C_(m,n)表示长为m的圈与n个孤立点的联结(join)所得的图.本文证明了C_(m,n)的最小亏格和最小不可定向亏格与完全二部图K_(m,n)的相等.同时,证明当m≥2并且n≥2时,K_(m,n)在其最小可定向曲面上有一个强嵌入;当m≥3并且n≥3时,在最小不可定向曲面上有一个强嵌入.
Let C_(m,n) be the join graph of C_m(a cycle of length m) and n isolated vertices. In this paper,we first show that the genus and nonorientable genus of C_(m,n) equal those of K_(m,n),which were well known and discovered by Ringel[1,2].Then we show that the complete bipartite graph K_(m,n) has a strong orientable genus embedding if m≥2 and n≥2 and has a strong nonorientable genus embedding if m≥3 and n≥3.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第2期17-21,共5页
Journal of East China Normal University(Natural Science)
关键词
亏格
不可定向亏格
强嵌入
genus
nonorientable genus
strong embedding