期刊文献+

C_(m,n)的最小亏格与K_(m,n)的强嵌入(英文)

Genus of C_(m,n) and strong genus embedding of K_(m,n)
下载PDF
导出
摘要 令C_(m,n)表示长为m的圈与n个孤立点的联结(join)所得的图.本文证明了C_(m,n)的最小亏格和最小不可定向亏格与完全二部图K_(m,n)的相等.同时,证明当m≥2并且n≥2时,K_(m,n)在其最小可定向曲面上有一个强嵌入;当m≥3并且n≥3时,在最小不可定向曲面上有一个强嵌入. Let C_(m,n) be the join graph of C_m(a cycle of length m) and n isolated vertices. In this paper,we first show that the genus and nonorientable genus of C_(m,n) equal those of K_(m,n),which were well known and discovered by Ringel[1,2].Then we show that the complete bipartite graph K_(m,n) has a strong orientable genus embedding if m≥2 and n≥2 and has a strong nonorientable genus embedding if m≥3 and n≥3.
作者 镡松龄 任韩
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期17-21,共5页 Journal of East China Normal University(Natural Science)
关键词 亏格 不可定向亏格 强嵌入 genus nonorientable genus strong embedding
  • 相关文献

参考文献7

  • 1RINGLE G. Das Geschlecht des vollstandigen paaren Graphen[J]. Abh Math Sem Univ Hamburg, 1965, 28: 139-150.
  • 2RINGLE G. Der vollstandigen paaren Graphen auf nichtorientierbaren Flachen[J]. J Reine Angew Math, 1965, 220: 88-93.
  • 3BONDY J A, MURTY U S R. Graph Theory[M]. New York: Springer, 2008.
  • 4MORHAR B, THOMASSEN C. Graphs on Surfaces[M]. Baltmore: Johns Hopkins University Press, 2001.
  • 5FIRBY P A, GARDINER C F. Surface Topology[M]. [S.I.]: Ellis Horwood Limited, 1982.
  • 6BOUCHET A. Orientable and nonorientable genus of the complete bipartite graph[J]. J Combin Theory Ser, 1978, 24: 24-33.
  • 7HAGGARD G, Edmonds' characterization of disc embeddings[J]. Congr Number, 1977, 19: 291-302.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部