期刊文献+

隔震桥梁地震反应的最优主动控制力特性研究 被引量:2

Characteristics of optimal control force for seismically excited isolated bridges
下载PDF
导出
摘要 采用经典二次型LQR主动控制算法,研究隔震桥梁支座处主动控制装置的控制力特性。研究表明:主动控制力主要表现为阻尼力;当采用适当的状态反馈控制向量及控制权矩阵时,主动控制力与支座的速度基本接近线性关系。在此基础上,提出了基于主动控制算法的隔震桥梁最优被动粘滞阻尼器设计方法。被动粘滞阻尼器的最优阻尼系数既可以由LQR的控制增益直接得到,也可以通过线性拟合在实际地震波作用下的主动控制力与速度的关系曲线得到,且二者的结果极为接近。进一步的仿真分析结果表明,优化的被动粘滞阻尼器完全可以达到主动控制的减震效果。 The characteristics of control force of an active device located between a bridge deck and a pier for an isolated highway bridge are first analyzed based on classical LQR(Linear quadratic regulator) control algorithm.It shows that the active control force mainly behaves as a damping force,and there is an approximate linear relationship between the force and velocity of the control device on the condition that the suitable state feedback and weighting matrix are adopted.On this basis,the method of designing optimal linear viscous dampers based on LQR control algorithm for seismically excited isolated bridges is proposed.The optimal viscous damping coefficient for a viscous damper can be either directly obtained from the control gain of LQR control or derived from the linear fitting of the relationship between the control force and velocity when the bridge is subjected to real seismic excitations.The parameters optimized from the two methods are quite close to each other.Effectiveness of the designed optimal passive control is further demonstrated by comparing the control performance with that of ideal active control based on numerical results.
出处 《振动工程学报》 EI CSCD 北大核心 2011年第2期175-180,共6页 Journal of Vibration Engineering
基金 国家自然科学基金重点资助项目(50738002)
关键词 桥梁 隔震 主动控制力 经典二次型控制 最优粘滞阻尼系数 bridge seismic isolation active control force classical LQR control optimal viscous damping coefficients
  • 相关文献

参考文献18

二级参考文献118

共引文献178

同被引文献18

  • 1周亚刚,孙利民.斜拉索-三单元Maxwell阻尼器系统的复模态分析[J].同济大学学报(自然科学版),2006,34(1):7-12. 被引量:9
  • 2张春巍,欧进萍.结构振动AMD控制系统主动控制力特征指标与分析[J].工程力学,2007,24(5):1-9. 被引量:5
  • 3Yao J T P. Concept of structural control [ J ]. ASCE Journal of the Structural Division, 1972,98 : 1113 - 1119.
  • 4Li H,Ou J P. A design approach for semi-active and smartbase-isolated buildings [ J ]. Structural Control and Health Monitoring ,2006,13:660 - 681.
  • 5Iemura H, Pradono M H. Application of pseudo negative stiffness control to the benchmark cab/e-stayed bridges[ J]. Journal of Structural Control,2003,10 ( 3 ) : 187 - 203.
  • 6Iemura H, Pradono M H. Simple algorithm for semi-active seismic response control of cable-stayed bridges[J]. Earth- quake Engineering and Structural Dynamics ,2005,34 (4) : 10 -25.
  • 7Iemura H, Igarashi A, Pradono M H, et al. Negative stiff-ness friction damping for seismically isolated structures [ J ]. Structural Control and Health Monitoring,2006,13 ( 2 -3) :775 -791.
  • 8Pradono M H, Iemura H, Igarashi A, et al. Passively con- trolled MR damper in the benchmark structural control problem for seismically excited highway bridge [ J]. Struc- tural Control and Health Monitoring, 2009, 16 (6) : 626 -638.
  • 9LiH,LiuM,0uJP.Negativestiffnesscharacteristicsofactiveandsemi-activecontrol.ystemsforstaycables[J].StructuralC0ntrolandHealthMonitoring,2008,15(2):120一142.
  • 10Ou J P, Li H. Analysis of capability for semi-active or passive damping systems to achieve the performance of active control systems[ J ]. Structural Control and Health Monitoring,2010,17 (7) :778 - 794.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部