期刊文献+

一类Landau-Lifshitz型泛函的极小元的零点分布

Location of Zero Points of Minimizers in a Landau-Lifshitz Functional
下载PDF
导出
摘要 在函数类空间:W={u(x)=(sinf(r)eidθ,cosf(r))∈H1(B,S2);u|аB=g}中研究Landau-Lifshitz型泛函Eε(u,B)=12B∫|u|2dx+1/2ε2 B ∫u23dx的径向极小元uε当ε→0时的极限行为,通过给出uε的整体估计和引入尺度定理,得到了径向极小元uε的第三个分量u3等于1的点的分布状况. The asymptotic behavior of the radial minimizer uε of the Landau-Lifshitz type functional Eε(u,B)=12 B∫|аu|2dx+12ε2 B∫u23dx when ε→0 in functional space W={u(x)=(sinf(r)eidθ,cosf(r))∈H1(B,S2);u|аB=g} was studied.Through the integral estimate of uε and the introduction of Scaling Law,the points where uε3 equals 1 will be located.
作者 占德胜
出处 《佳木斯大学学报(自然科学版)》 CAS 2011年第2期287-289,共3页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省教育厅重点研究项目(20101310) 安徽省高等学校省级优秀青年人才基金项目(2010SQRL223) 安徽省教育科学规划课题(JG08269) 江苏省教育厅高校哲学社会科学基金资助项目(09SJB880031)
关键词 径向极小元 零点分布 Landau-Lifshitz型泛函 radial minimizer location of zeros Landau-Lifshitz-type functional
  • 相关文献

参考文献1

二级参考文献10

  • 1Pope SB.Turbulent Flows[]..2000
  • 2Lu XY,Zhuang LX.Numerical study of natural convection in a vertical slot[].Acta Mechanica Sinica.1999
  • 3Patton EG.Large eddy simulation of turbulent flow within and above a plant canopy[]..1997
  • 4Gao W,et al.Observation of organized structure in turbulent flow within and above a forest canopy[].Boundary Layer Meteorology.1989
  • 5Spalart PR.Strategies for turbulence modeling and simulation[]..1997
  • 6Lesieu M,Metais O.New trends in large eddy simulation of turbulence[].Ann Rev Fluid Mechanics.1996
  • 7Marion M,Temma R.Nonlinear Galerkin methods[].SIAM JNumer Anal.1989
  • 8Moin P.Tackling turbulence with supercomputers[].Scientific American.1997
  • 9Deardorff JW.Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection[].Journal of the Atmospheric Sciences.1970
  • 10Zhou Y.Advances in the fundamental aspects of turbulence transfer,interacting scales and self-preservation in isotropic decay[].Applied Mechanics Reviews.1998

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部