期刊文献+

基于邻接矩阵分解的肿瘤亚型特征提取方法

Feature extraction of tumor subtype based on adjacency matrix decomposition
下载PDF
导出
摘要 基于肿瘤基因表达谱的肿瘤分类是生物信息学的一个重要研究内容。传统的肿瘤信息特征提取方法大多基于信息基因选择方法,但是在筛选基因时,不可避免的会造成分类信息的流失。提出了一种基于邻接矩阵分解的肿瘤亚型特征提取方法,首先对肿瘤基因表达谱数据构造高斯权邻接矩阵,接着对邻接矩阵进行奇异值分解,最后将分解得到的正交矩阵特征行向量作为分类特征输入支持向量机进行分类识别。采用留一法对白血病两个亚型的基因表达谱数据集进行实验,实验结果证明了该方法的可行性和有效性。 Tumor classification based on tumor gene expression is an important part of bioinformatics.The traditional tumor identification is mostly based on genetic selection method,but,the loss of classified information is inevitable when filter genes.This paper proposes a comprehensive feature extraction method,based on adjacency matrix decomposition,by means of constructing the Gauss adjacency matrix of gene expression data and Singular value decomposition on adjacency matrix,and putting the orthogonal matrix vector as the classification features into SVM to recognition.Leave one out method was used and two subtypes of leukemia gene expression data were taken for example.The feasibility and effectiveness of this algorithm were well proven.
出处 《生物学杂志》 CAS CSCD 2011年第2期87-89,共3页 Journal of Biology
基金 国家自然科学基金(10601001 60772121) 安徽省自然科学基金(070412065) 安徽省教育厅自然科学研究项目(2006KJ030B)
关键词 生物信息学 邻接矩阵 基因表达数据 特征提取 bioinformatics adjacent spectral gene expression data feature extraction
  • 相关文献

参考文献12

  • 1Goluh T R,Slonim D K,Tanmyo P.el al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999.286:531-537.
  • 2Singh D,Febbo P G,Rots K,et al.Gene expression correlates of clinical prostate cancer behavior[J].Cancer Cell,2002,1:203-209.
  • 3阮晓钢,晁浩.肿瘤识别过程中特征基因的选取[J].控制工程,2007,14(4):373-375. 被引量:15
  • 4Guyon l,Weston J,Bamhill s,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002,46:389-422.
  • 5Vinayagam A,Kinig R,Moormann J,et al.Applying support vector machines for gene ontology based gene function prediction[J].BMC Bioinformatics,2005,5:116.
  • 6Zhang H H,Ahn J,Lin X,et al.Gene selection using support vector machines with non-convex penalty[J].Bioinformatics,2006,22:88-95.
  • 7Valentini G,Muselli M,Ruffino F.Cancer recognition with bagged ensembles of support vector machines[J].Neurocomputing,2004,56:461-466.
  • 8庄振华,王年,李学俊,梁栋,王继.癌症基因表达数据的熵度量分类方法[J].安徽大学学报(自然科学版),2010,34(2):73-76. 被引量:9
  • 9Cvetkovir D,Doob M,Sachs H.Spectra of graphs-theory and application (third edition)[M j.New York:Johann Aml)rosius Barth Verlag,1995.
  • 10Chung F R K.Spectral graph theory[J].American Mathematical Society,Providence,Rhode Island,1997.

二级参考文献37

  • 1李颖新,刘全金,阮晓钢.一种肿瘤基因表达数据的知识提取方法[J].电子学报,2004,32(9):1479-1482. 被引量:13
  • 2郎显宇,陆忠华,迟学斌.一种基于“基因表达谱”的并行聚类算法[J].计算机学报,2007,30(2):311-316. 被引量:11
  • 3阮晓钢,晁浩.肿瘤识别过程中特征基因的选取[J].控制工程,2007,14(4):373-375. 被引量:15
  • 4Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring [ J ]. Science, 1999,286 : 531 - 537.
  • 5Singh D, Febbo P G, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior [ J ]. Cancer Cell ,2002,1:203 - 209.
  • 6Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display of genome-wide expression pattenrs [ J ]. Proc Natl Acad Sci USA, 1998,95 ( 25 ) : 14863 - 14868.
  • 7Brazma A, Vilo J. Gene expression data analysis[ J]. FEBS Letters,2000,480( 1 ) :1724.
  • 8Anderw D K, Michel S chummer, Lee H, et al. Bayesian classification of DNA array expression data[ R]. Technical Report UW-CSE,2000.
  • 9Zhou X B, Wang X D, Dougherty E R. A Bayesian approach to nonlinear porbit gene selection and classification[ J], Journal of the'Franklin Institute,2004,341 (1,2) :137 -156.
  • 10Khan J, Wei J S, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[ J]. Nature Medicine ,2001,7:673 -679.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部