期刊文献+

水文模型参数优选的改进粒子群优化算法 被引量:3

Improved particle swarm optimization algorithm for parameter optimization of hydrologic models
原文传递
导出
摘要 针对标准粒子群算法的早熟收敛问题,提出了一个提高算法性能的改进途径,即引入动态改变惯性权重策略和混沌思想,在两个方面同时改进以提高粒子群算法的收敛速度和克服局部极值的能力.对两个函数进行寻优测试表明,改进后的粒子群算法收敛速度、精度以及全局搜索能力均优于标准粒子群算法.最后将提出的改进粒子群算法应用于新安江模型进行参数优选,应用结果表明,该算法具有较强的可行性与实用性. Aiming at the problem of premature convergence in the particle swarm optimization(PSO) algorithm,an improved algorithm is put forward.In the algorithm,the dynamic inertia weight is proposed and the chaos theory is introduced.By combining these two methods,the convergence rate of the algorithm and the capability of overcoming local extreme value are increased.Experiments on two functions show that the improved algorithm is prior to traditional PSO in convergence rate,precision and global searching ability.The improved PSO is applied to optimize parameters of XAJ model.Application results show that this algorithm has good feasibility and practicability.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2011年第2期182-186,共5页 Engineering Journal of Wuhan University
基金 霍英东青年教育基金项目(编号:101075)
关键词 改进粒子群算法 动态改变惯性权重 混沌 新安江模型 参数优选 improved particle swarm optimization dynamic inertia weight chaos XAJ model parameter optimization
  • 相关文献

参考文献20

  • 1谭炳卿.水文模型参数自动优选方法的比较分析[J].水文,1996,15(5):8-14. 被引量:28
  • 2Rosenbrock H H. An automatic method for finding the greatest or least value of function[J]. Computer Jour- nal, 1960,3 : 175-183.
  • 3Nelder J A, Meade R A. Simplex method for function minimization[J]. Computer Journal, 1965,7:308-313.
  • 4Wang Q J. The genetic algorithm and its application to calibrating conceptual rainfall-runoff models[J]. Water Resources Research, 1991,27(9) : 2467-2471.
  • 5Wang Q J. Using genetic algorithm to optimize model parameters[J]. Environmental Modelling & Software, 1997,12(1) :27-34.
  • 6陆桂华,郦建强,杨晓华.水文模型参数优选遗传算法的应用[J].水利学报,2004,35(2):50-56. 被引量:46
  • 7武新宇,程春田,赵鸣雁.基于并行遗传算法的新安江模型参数优化率定方法[J].水利学报,2004,35(11):85-90. 被引量:46
  • 8Duan Q Y, Sorooshian S, Gupta V J. Effective and ef- ficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research, 1992,28 (4): 1015-1031.
  • 9Duan Q Y, Sorooshian A, Gupta V J. Optimal use of the SCE-UA global optimization method for calibrating watershed models [J]. Journal of Hydrology, 1994, 158:265-284.
  • 10Kennedy J, Eberhart R. Particle swarm optimization [C]//IEEE Int 1 Conf on Neural Networks. Perth, Austraial, 1995 : 1942-1948.

二级参考文献83

共引文献745

同被引文献23

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部