期刊文献+

基于邻域粗糙集自适应调整剪枝门限的免疫网络故障诊断算法 被引量:1

A Fault Diagnosis Algorithm for Immune Network with Self-adaptive Adjustment Pruning Threshold of Neighbor Rough Set
下载PDF
导出
摘要 通过在形态空间中建立抗体和抗原的邻域关系,阐述了抗体与抗原的匹配过程,论述了基于免疫网络模型(aiNet)的故障诊断算法中剪枝门限与故障诊断漏诊概率和误诊概率的关系.文中引入粗糙集理论,定义了基于抗体邻域的故障模式边界和故障模式包含关系,给出了自适应调整剪枝门限的观测指标和具体算法.仿真结果表明,本文所提出的故障诊断算法具有优良性能,提高了故障诊断正确率和新故障识别率. The matching process between the antibody and the antigen is investigated by their near neighbor relationship in the shape space,and the relationship between the pruning threshold and the probabilities of the mismatch and the misdiagnosis is studied for fault diagnosis algorithm based on immune model(aiNet).The fault model boundaries and the containing relationship of these fault models are defined through the rough set theory,and observation criterion and concrete algorithm for self-adaptive adjustment pruning threshold are presented.The simulation result shows that the fault diagnosis algorithm is excellent,the correct diagnosis probabilities of all the fault types and the rate of new fault detection are improved.
出处 《信息与控制》 CSCD 北大核心 2011年第2期221-226,共6页 Information and Control
基金 国防预研基金资助项目(2006YBJ001) 国家自然科学基金资助项目(60970022 61070072) "十一五"国家科技支撑计划重点资助项目(2009BAH51B02)
关键词 免疫网络 粗糙集 故障诊断 自适应调整剪枝门限 immune network rough set fault diagnosis self-adaptive adjustment pruning threshold
  • 相关文献

参考文献9

  • 1Jerne N K. Towards a network theory of the immune system[J]. Annual Immunology, 1974, 125C(1/2): 373-389.
  • 2de Castro L N, yon Zuben F J. aiNet: An artificial immune network for data analysis[M]. Pennsylvania: Idea Group Publishing, 2001.
  • 3de Castro L N, yon Zuben F J. An evolutionary immune network for data clustering[C]//Proceedings of the Sixth Brazilian Symposium on Neural Networks. Piscataway, NJ, USA: IEEE, 2000: 84-89.
  • 4郑永煌,李人厚.一种改进的基于免疫网络模型(aiNet)的故障诊断算法[J].控制与决策,2010,25(6):847-851. 被引量:4
  • 5Pawlak Z. Rough sets: Theoretical aspects of reasoning about data[M]. Dordrecht: Kluwer Academic Publisher, 1991.
  • 6Shen L X, Francis E H, Qu L S, et al. Fault diagnosis using rough sets theory[J]. Computers in Industry, 2000, 43(1): 61- 72.
  • 7Li W W, Huang H X, Wang C H, et al. Synthetic fault diagnosis method of power transformer based on rough set theory and improved artificial immune network classification algorithm[C]// Proceedings of the Fourth International Conference on Natural Computation. Piscataway, NJ, USA: IEEE, 2008: 676-681.
  • 8Zhang X, Sun J B. Fault diagnosis of marine diesel engine by means of immune-rough sets and RBF neural network[C]//Proceedings of the 2009 Second International Conference on Information and Computing Science. Piscataway, NJ, USA: IEEE, 2009: 174-177.
  • 9Hu Q H, Yu D R, Xie Z X. Neighborhood classifiers[J]. Expert System with Applications, 2008, 34(2): 866-876.

二级参考文献9

共引文献3

同被引文献40

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部