期刊文献+

Fe_3O_4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征 被引量:20

Controlled Synthesis and Characterization of the Structure and Property of Fe_3O_4 Nanoparticle-Graphene Oxide Composites
下载PDF
导出
摘要 首先利用高温分解法制备了粒径为18nm的Fe3O4磁性纳米粒子,并进行羧基化修饰,然后与聚乙烯亚胺(PEI)化学修饰的氧化石墨烯进行交联反应,得到磁功能化的氧化石墨烯(MGO)复合材料.研究了氧化石墨烯片上的磁性纳米粒子的可控负载及其对复合材料磁性能的影响.利用透射电子显微镜(TEM),原子力显微镜(AFM),X射线衍射(XRD),傅里叶变换红外(FT-IR)光谱,热重分析(TGA),振荡样品磁强计(VSM)等手段对MGO复合材料的形貌,结构和磁性能进行了表征.结果表明,我们发展的MGO复合材料的制备方法具有简单、可控的优点,所制备的MGO复合材料具有较高的超顺磁性.该类磁性氧化石墨烯复合材料有望在磁靶向药物、基因输运、磁共振造影以及磁介导的生物分离和去除环境污染物等领域获得广泛的应用. Fe3O4 nanoparticle-graphene oxide (MGO) composites were prepared by chemically binding carboxylic acid-modified Fe3O4 nanoparticles to polyethylenimine-functionalized graphene oxide (GO). The structure, morphology, and magnetic properties of the composites were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The results show that the Fe3O4 nanoparticle content in the MGO composites can be easily controlled by changing the ratio of Fe3O4 nanoparticles to GO in the reaction mixture. The MGO composites obtained are superparamagnetic with high saturation magnetization, which can potentially be applied in magnetic targeted drug delivery, gene transport, magnetic resonance imaging, bioseparation, and magnetic guided removal of aromatic contaminants in waste water and in other fields.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第5期1261-1266,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20873090 21073224)资助项目~~
关键词 氧化石墨烯 Fe3O4磁性纳米粒子 复合材料 可控制备 表征 Graphene oxide Fe3O4 nanoparticle Composite Controlled synthesis Characterization
  • 相关文献

参考文献27

  • 1Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
  • 2Shen, J. F.; Hu, Y. Z.; Shi, M.; Li, N.; Ma, H. W.; Ye, M. X J. Phys. Chem. C2010, 114, 1498.
  • 3Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
  • 4Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H. J. Phys Chem. B 2004, 108, 19912.
  • 5Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
  • 6Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Adv. Mater. 2008, 20, 3289.
  • 7Wu, J. S.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718.
  • 8Huang, J.; Zhang, L. M.; Chen, B.; Ji, N.; Chen, F. H.; Zhang, Y.; Zhang, Z. J. Nanoscale 2010, 2, 2733.
  • 9Zhang, X. Y.; Yang, X. Y.; Ma, Y. E; Huang, Y.; Chen, Y. S. Journal of Nanoscience and Nanotechnology 2010, 10, 2984.
  • 10Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wangand, Y. S Chen, Y. S. J. Mater Chem. 2009, 19, 2710.

同被引文献423

引证文献20

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部