期刊文献+

基于双层位势的非定常扩散方程的虚边界元解法

On virtual boundary element method based on double layer potential for unsteady diffusion equation
下载PDF
导出
摘要 对于二维非定常扩散方程边值问题,采用与时间有关的基本解,基于双层位势的延拓,建立虚边界积分方程,然后用虚边界元法求解.通常的虚边界积分公式是利用单层位势的延拓来建立虚边界元积分方程,但对带时间变量的单层位势,要涉及到指数积分函数的计算.提出了基于双层位势的方法,计算时没有涉及到对基本解的时间积分,避免了用直接边界元方法求解时遇到的指数积分函数.最后,通过数值算例验证了该方法的有效性和可行性. Initial boundary value problem of two dimensional unsteady diffusion equations is solved in this paper.By using time-dependent fundamental solution of two dimensional diffusion equations and the extension of double layer potential,virtual boundary integral expression of diffusion equations are established.Then virtual boundary element method is used to implement the numerical computation.The traditional virtual boundary integral expression is based on the extension of single layer potential,for the integral formulas related to single layer potential for parabolic problem,the numerical computation of the exponential integral function is unavoidable.In this thesis,the virtual boundary integral equation is based on double layer potential and the exponential integral function is not involved in it,so numerical computation for the exponential integral function is avoid.Finally,numerical examples illustrate the feasibility and the efficiency of the proposed method.
作者 汪学海
出处 《河南城建学院学报》 CAS 2011年第2期74-76,79,共4页 Journal of Henan University of Urban Construction
关键词 虚边界元 双层位势 非定常扩散方程 virtual boundary element double layer potential unsteady diffusion equation
  • 相关文献

参考文献5

二级参考文献15

  • 1余德浩.无界区域上基于自然边界归化的一种区域分解算法[J].计算数学,1994,16(4):448-459. 被引量:49
  • 2余德浩.无界区域非重叠区域分解算法的离散化及其收敛性[J].计算数学,1996,18(3):328-336. 被引量:53
  • 3吕桂霞,马富明.二维热传导方程有限差分区域分解算法[J].数值计算与计算机应用,2006,27(2):96-105. 被引量:12
  • 4布瑞比亚CA 龙述尧等(译).边界单元法的理论和工程应用[M].北京:国防工业出版社,1988.262-263.
  • 5布瑞比亚CA,泰勒斯JCF,诺贝尔LC.边界元的理论和工程应用[M].龙述尧,刘腾喜,蔡松柏译.北京:国防工业出版社,1988.
  • 6Zhu J. An indirect boundary element method in the solution of the diffusion equation[ C]. Oxford: Boundary Element Ⅷ Conference, 1986:707 - 714.
  • 7C.N.Dawson, Q.Du and T.F.Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation, J. Math. Comp, 57(1991) 63-71.
  • 8Wan Zhengsu, Zhang Baolin, Chen Guangnan, Design and Analysis of Finite Difference Domain Decomposition Algorithms for the Two-dimensional Heat Equation, Proceedings: Fifth International Conference on Algorithms and Architectures for Parallel Processing, October 23-25, 2002,Beijing, China.
  • 9郭本瑜.偏微分方程的差分方法.北京,科学出版社,1985.
  • 10V.K.Saul'yev, Integration of equations of parabolic type by method of nets, New York, 1964.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部