期刊文献+

一类分数阶微分方程正解的存在性 被引量:3

Existence of positive solution to a class of fractional differential equation
下载PDF
导出
摘要 利用锥上的不动点定理,讨论一类分数阶微分方程正解的存在性,得到所讨论方程存在两个正解的一些新的充分条件. The existence of positive solution to a fractional differential equation was discussed by using fixed point theory on a cone.Some new sufficient conditions for existence of two positive solutions to the equation discussed.
作者 吴炳华
出处 《兰州理工大学学报》 CAS 北大核心 2011年第2期146-149,共4页 Journal of Lanzhou University of Technology
基金 徐州工程学院青年教师科研项目(XKY2007318)的资助
关键词 正解 全连续 不动点定理 positive solution complete continuity fixed point theorem
  • 相关文献

参考文献6

  • 1CAMPOS L M CM. On the solution of some simple fractional differential equation [J]. Int Math Sci, 1990,13(3):481-496.
  • 2LING Y, DINGS. A class of analytic function defined by fracrive derivative [J]. Math Anal Appl, 1994,180 (2): 504-513.
  • 3DELBOSCO D, RODINO L. Existence and uniqueness for a nonlinear fractional differential equation [J]. Math Anal Appl, 1996,204 (2): 609-625.
  • 4ZHANG S Q. The existence of a positive solution for a nonlinear fractional differential equation [J]. Math Anal Appl,2000, 252(2) : 804-812.
  • 5BAI Z B. Positive solutions for boundary value problem of nonlinear fractional differential equation [J]. Math Anal Appl, 2005,311(2): 495-505.
  • 6BAI Z B, QIU T T. Existence of positive solution for singular fractional differential equation [J]. Appl Math Comput, 2009, 215(7): 2761-2767.

同被引文献17

  • 1SABATIER J, AGRAWAL O P, TENREIRO M J A. Ad-vances in fractional calculus:Theoretical developments and ap- plications in physics and engineering [M]. New York: Spring- er, 2007.
  • 2PODLUBNY I. Geometric and physical interpretation of frac- tional integration and fractional differentiation [J]. Fract Calc Appl Anal, 2002,5 (4) : 367-386.
  • 3GAIN S Q. Dissipatlvity of 0-methods for nonlinear Volterra de- lay-integro-differentia] equations [J]. J Comput Appl Math, 2007,206(2) :898-907.
  • 4LIANG S H, ZHANG J H. Positive solutions for boundary val- ue problems of nonlinear fractional differential equation [J]. Nonlinear Anal, 2009,71 (11 ) : 5545-5550.
  • 5BAI Z B, QIU T T. Existence of positive solution for singular fractional differential equation [J]. Appl Math Comput, 2009, 215(7) : 2761-2767.
  • 6AHMAD B. Existence of solutions for fractional differential e- quations of order q∈ (2,3']with anti-perlodic boundary condi- tions [J]. J Appl Math Comput, 2010,34(1) : 385-391.
  • 7CHEN T Y,LIU W B, HU Z G. A boundary value problem for fractional differential equation with p-Laplacian operator at resonance [J]. Nonlinear Anal,2012,75(6):3210-3217.
  • 8WANG J H, XIANG H G, LIU Z G. Positive solutions for three-point boundary value problems of nonlinear fractional differential equations with p-Laplacian [J]. Far East J Appl Math, 2009,37(1) : 33-47.
  • 9CHAI G Q, Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator [J]. Bound Value Probl, 2012,2012(1) : 18-38.
  • 10GUO D J, ,AKSHMIKANTHAM V. Nonlinear problems in abstract cones [M]. Orlando: Academic Press, 1988.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部