期刊文献+

基于自组织神经网络与核密度估计的非线性MPCA在线故障监测

Method of On-line Fault Monitoring Based on Autoassociative Neural Network and Kernel Density Estimation Nonlinear MPCA
下载PDF
导出
摘要 针对多向主元分析(MPCA)不能提取复杂的非线性系统变量间的非线性特性以及T2统计量置信限的确定是以主元得分呈正态分布为假设前提的情况,提出了一种基于自组织神经网络与核密度估计的非线性MPCA在线故障监测方法.该方法用自组织神经网络去提取变量间的非线性特征信息;用核概率密度函数去估计非线性主元的置信限.将该方法应用到β-甘露聚糖酶补料分批发酵过程的在线故障监测中,应用效果表明用非线性主元比用同样数目的线性主元能够获取更多的变量信息,并且用核密度估计置信限的方法比用参数估计的方法能更准确地对故障进行监测. Multiway principal components analysis(MPCA) is a linear model in nature.So MPCA is limited when it is applied to batch process.In this paper,the linear model MPCA was complemented with an autoassociative neural network model in order to generate nonlinear principal components.A method to estimate confidence limits based on a kernel probability density function was proposed since the nonlinear scores are no normally distributed.A statistic-like parameter(DNL) was proposed to evaluate on-line scores for new runs using the density estimated confidence bounds and replacing the T2 statistic.The proposed method was applied to on-line monitoring fed-batch β-mannanase production,and the practical results show that the nonlinear scores obtained with the autoassociative neural networks capture more process data variance than if obtained with a linear method and the density estimation method proved to be more reliable.
作者 肖应旺
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第5期989-993,共5页 Journal of Chinese Computer Systems
基金 广东省自然科学基金项目(9151063101000043)资助 国家"八六三"高技术研究发展计划项目(2009AA05Z203)资助
关键词 多向主元分析 自组织神经网络 核密度估计 非线性主元 在线故障监测 multiway principal component analysis(MPCA) autoassociative neural network kernel density estimation nonlinear score on-line fault monitoring
  • 相关文献

参考文献3

二级参考文献8

  • 1[1]Myers C, et al. Performance Tradeoffs in Dynamic Time Warping Algorithms for Isolated Word Recognition. IEEE Trans. on Acoustics, speech and Signal Processing ,ASSP1984,32(2): 263
  • 2[2]Nomikos P, J F MacGregor. Monitoring Batch Processes Using Multiway Principal Component Analysis. AIChE J. 1994, 40,1361
  • 3[3]Lakshminarayanan S, et al. Monitoring Batch Processes using Multivariate Statistical Tools: Extensions and Practical Issues.IFAC Triennial World Congress, San Francisco, 1996
  • 4[4]Athanassios Kassidas, et al. Synchronization of Batch Trajectories Using Dynamic Time Warping. AIChE J. 1998,44,864
  • 5[5]Sakoe H, S. Chiba. Dynamic Programming Algorithm Optimization for Spoken Word Recognition, IEEE Trans. On Acoustics,Speech and Signal Process. ASSP1978,26(1) ,43
  • 6曹劲,王桂增,徐博文.基于鲁棒自适应RBF网络的聚丙烯熔融指数预报[J].控制与决策,1999,14(4):339-343. 被引量:15
  • 7陈耀,王文海,孙优贤.基于动态主元分析的统计过程监视[J].化工学报,2000,51(5):666-670. 被引量:23
  • 8李尔国,俞金寿.PCA在过程故障检测与诊断中的应用[J].华东理工大学学报(自然科学版),2001,27(5):572-576. 被引量:19

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部