摘要
针对极端学习机(ELM)网络伪逆输出权值计算方法的运算复杂度制约其训练速度问题,提出一种基于信赖域Newton算法的新型ELM网络(TRON-ELM),并采用信赖域Newton算法求解ELM网络的输出权值.该算法首先构造一个ELM网络代价函数的Newton方程,并将其作为一个无约束优化问题,采用共轭梯度法求解,避免了求代价函数Hessian矩阵逆的运算,提高了训练速度,信赖域条件的存在保证了算法的整体收敛性.仿真实验结果验证了所提出方法的有效性.
Considering the problems that the complexity of generalized inverse limits the learning speed of extreme machine learning(ELM),a novel ELM,called TRON-ELM,is proposed based on the trust region Newton method in which the trust region Newton method is used to derive the output weights.The proposed method takes the Newton equation of the cost funcion of ELM as an unconstrained optimization,and a conjugate gradient method is used to solve the equation,which avoids solving the inverse of the Hessian matrix,thus the operation speed is improved.Meanwhile,the existence of trust region guarantees the global convergence.The experimental results show the effectiveness of the proposed method.
出处
《控制与决策》
EI
CSCD
北大核心
2011年第5期757-760,共4页
Control and Decision
基金
国家自然科学基金项目(60674073)
国家科技支撑计划项目(2006BAB14B05)
国家973计划项目(2006CB403405)
关键词
极端学习机
信赖域Newton法
共轭梯度法
回归
extreme machine learning
trust region Newton method
conjugate gradient method
regression