期刊文献+

一种离焦模糊图像的约束复原方法 被引量:4

An algorithm of constrained restoration for defocus blurred image
下载PDF
导出
摘要 针对离焦模糊图像,提出了一种基于图像质量的约束复原算法。该算法基于平滑约束最小二乘,采用正则化技术以减少高频噪声的放大。使用人类视觉系统(HVS)特性中的对比敏感度函数(CSF)对图像功率谱加权来评价图像质量,通过搜索图像质量的最大值实现对正则参数的自适应选择,使复原结果更符合人的视觉感受。实验结果表明:该算法不需要估计降质图像的噪声水平,却能获得和平滑最小二乘复原方法相当甚至更好的复原结果。 As for defocus blurred image, a constrained restoration algorithm was proposed based on image quality. This algorithm used regularization to eliminate the noise ampliation. The contrast sen- sitivity function (CSF) of the characteristics of human visual system (HVS) was used for weighting the image power spectra to evaluate the image quality. The regularization parameter was auto selected by searching the maximum of the image quality in order to make the resorted result fit human perception more suitably. The experiments show that the proposed algorithm does not need to estimate noise level and can achieve good or better result as compared with the smoothing constrained least square restoration.
出处 《海军工程大学学报》 CAS 北大核心 2011年第2期98-102,共5页 Journal of Naval University of Engineering
关键词 图像复原 离焦模糊 图像质量 CSF image restoration defocus blur image quality CSF
  • 相关文献

参考文献10

二级参考文献55

共引文献101

同被引文献26

  • 1HOU W, GRAY D J, WEIDEMAN A D,et al. Comparison and validation of point spread models for imaging innatural waters [J]. Optics Express, 2008,16(13) :9958-9965.
  • 2GE Wei-long, HAN Hong-wei, ZHANG Xiao-hui. A new kind of underwater photoelectric imaging system [J].Proc. of SPIE, 2009,7382:73824T-1-73824T-7.
  • 3MCLEAN E A, Jr BURRIS H R,STRAND M P. Short-pulse range-gated optical imaging in turbid water [J].Appl. Opt. , 1995,34(21)4343-4351.
  • 4WELLS W. Loss of resolution in water as a result of multiple small-angle scattering [J]. J. Opt. Soc. Am. ? 1969,59(6)686-69l.
  • 5LEONARDA I,ARNOLD-BOSB A,ALFALOU A. Interest of correlation-based automatic target recognition inunderwater optical images: Theoretical justification and first results [J]. Proc. of SPIE,2010, 7678 : 7678001-767800-12.
  • 6ZHOURG, WANG H A, WU Q, et al. Quan- tum associative neural network with nonlinear search algorithm [J]. International Journal of Theo- retical Physics, 2012,51(3) .. 705-723.
  • 7LEE E S, KANG M G. Regularized adaptive high- resolution image reconstruction considering inaccu- rate sub-pixel registration [J]. IEEE Transactions on Image Processing, 2003,12(7) :826-837.
  • 8BECK A, TEBOULLE M. Fast gradient-based al- gorithms for constrained total variation image de noising and de-blurring problems [J]- IEEE Transactions on Image Processing, 2009,18 ( 11 ) : 2419-2434.
  • 9SCHULTZ R R, STEVENSON R L. A Bayesian approach to image expansion for improved defini- tion [J]. IEEE Transactions on Image Processing, 1994, MI-3(3) :233-242.
  • 10ZHANG X L, LAM K magnification based on a M, SHEN L S. Image blockwise adaptive Mar kov random field model [J]. Image and Vision Computing, 2008,26(9) : 1277-1284.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部