期刊文献+

用于不确定性分析的高斯过程响应面模型设计点选择方法 被引量:4

Design point choice of Gaussian process response surface model applied to uncertainty analysis
下载PDF
导出
摘要 为推动高斯过程响应面模型在复杂耗时数值模拟不确定性分析中的应用,提出一种可自动实现位置优化的高效设计点选择方法,即先在标准超立方体上生成拉丁超立方设计点,然后利用输入变量的已知概率分布将其映射回原始设计空间.将该方法与基于假设均匀分布的传统拉丁超立方设计方法进行比较,探讨它们对所建立的高斯过程响应面模型和不确定性分析结果的影响.算例表明新方法具有一定优势. An efficient method of design point choice is presented,which can automatically optimize the location of the points,to advance the application of Gaussian process response surface model to uncertainty analysis of the complex time-consuming numerical simulation.The method produces the design points in a standard Latin hypercube,and then maps them back to the original design space according to the known probability distribution of input variables.The method and the traditional Latin Hypercube Design method based on an assumed uniform distribution are compared and their effect on the established Gaussian process response surface model and uncertainty analysis result is discussed.An example indicates the advantage of the method.
出处 《计算机辅助工程》 2011年第1期101-105,共5页 Computer Aided Engineering
基金 国家自然科学基金委员会-中国工程物理研究院联合基金(10876100)
关键词 不确定性分析 蒙特卡罗方法 高斯过程 响应面模型 uncertainty analysis Monte Carlo method Gaussian process response surface model
  • 相关文献

参考文献7

  • 1OAKLEY J E, O' HAGAN A. Probabilistic sensitivity analysis of complex model: a Bayesian approach [ J ]. J R Stat Soc : Ser B : Stat Methodology, 2004, 66(3) : 751-769.
  • 2OAKLEY J E, O' HAGAN A. Bayesian inference for the uncertainty distribution of computer model outputs [ J ]. Biometrika, 2002, 89 (4) : 769-784.
  • 3KENNEDY M C, O' HAGAN A. Bayesian calibration of computer model[J]. J R Stat Soc: Ser B: Stat Methodology, 2001, 63(3) : 425-464.
  • 4BAYARRI M J, BERGER J O, PAULO R, et al. A framework for validation of computer models[ R]. North Carolina: Natl Inst Stat Sci Teeh Rep, 2005.
  • 5刘信恩,肖世富,莫军.高斯过程响应面法研究[J].应用力学学报,2010,27(1):190-195. 被引量:6
  • 6刘信恩,肖世富,莫军.复杂数值模拟的贝叶斯模型确认框架及其简化[C]//中国力学学会学术大会’2009,CCTAM2009-003789,郑州,2009.
  • 7MORRIS M D, MITCHELL T J. Exploratory designs for computational experiments [ J ]. J Stat Planning & Inference, 1995, 43 (3) : 381-402.

二级参考文献7

  • 1Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments (with discussion)[J]. Statistical Science, 1989, 4(4): 409-423.
  • 2Oakley J, O'Hagan A. Bayesian inference for the uncertainty distribution of computer model outputs[J]. Biometrika, 2002, 89(4): 769-784.
  • 3Oakley J, O'Hagan A. Probabilistic sensitivity analysis of complex model: a Bayesian approach[J]. Journal of the Royal Statistical Society B, 2004, 66(3): 751-769.
  • 4Kennedy M C, O'Hagan A. Bayesian calibration of computer model[J]. Journal of the Royal Statistical Society B, 2001, 63(3): 425 -464.
  • 5Bayarri M J, Berger J O, Paulo R, et al. A framework for validation of computer models[J]. Technometrics 2007,49(2):138-154.
  • 6Paulo R. Default priors for Gaussian processes[J]. The Annals of Statistics, 2005, 33(2): 556-582.
  • 7Morris M D, Mitchell T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference, 1995, 43(3): 381-402.

共引文献6

同被引文献34

  • 1李天昀,葛临东.两种快速频域细化分析方法的研究[J].系统工程与电子技术,2004,26(6):731-733. 被引量:14
  • 2郭勤涛,张令弥.结构动力学有限元模型确认方法研究[J].应用力学学报,2005,22(4):572-578. 被引量:32
  • 3刘信恩,肖世富,莫军.复杂数值模拟的贝叶斯模型确认框架及其简化[C]//中国力学学会学术大会’2009,CCTAM2009-003789,郑州,2009.
  • 4Oaldey J, O'Hagan A. Bayesian inference for the uncertainty distribution of compeer model outtmls[J]. Biometrika, 2002, 89(4): 769-784.
  • 5Oakley J, O'Hagan A. Probabilistic sensitivity analysis of complex model: a Bayesian approach[J]. Journal of the Royal Statistical Society B, 2004, 66(3): 751-769.
  • 6Kennedy M C, O'Hagan A. Bayesian calibration of computer model[J]. Journal ofthe Royal Stafislical Society B, 2001, 63(3):425-464.
  • 7Bayarri M J, Berger J O, Paulo R, et al. A framework for validation ofcomputermodels[J]. Technometrics, 2007;49(2): 138-154.
  • 8Higdon D, Gattiker J, Williams B, et al. Computer model calibration using high dimensional output[R]//LA-UR-05-6410. Los Alamos National Laboratory, 2005.
  • 9Bayarri M J, Berger J O, Cafeo J, et al. Computer modal validation with ftmctional output[R]. National Institute of Statisficai Sciences Technical Report, 2006.
  • 10Rougier J. Efficient emulators for multivariate deterministic fuctions[J]. Joumal of Computational and Graghical Statistics, 2008, 17(4): 827-843.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部