期刊文献+

随机环境中的分枝随机游动的若干极限定理

Some limit theorems on branching random walks in random environments
下载PDF
导出
摘要 假设{Zn;n=0,1,2,…}是一个随机环境中的分枝随机游动(即质点在产生后代的过程中,还作直线上随机游动),ξ={ξ0,ξ1,ξ2,…}为环境过程.记Z(n,x)为落在区间(-∞,x]中的第n代质点的个数,fξn(s)=∑∞j=0pξn(j)sj为第n代个体的生成函数,mξn=f′ξn(1).证明了在特定条件下,存在随机序列{tn}使得Z(n,tn)(∏n-1i=0mξi)-1均方收敛到一个随机变量.对于依赖于代的分枝随机游动,仍有类似的结论。 Suppose {Zn;n = 0,1,2,…} is a branching random walk in the random environment,and ξ = {ξ0,ξ1,ξ2,…} is the environment process.Let Z(n,x) be the number of the nth generation located in the interval(-∞,x],fξn(s) = ∑ ∞ j = 0 pξn(j) sj be the generating function of the distribution of the particle in the nth generation,and mξn = f ξ'n(1).We show that under the specific conditions,there exists a sequence of random variables {tn},so that Z(n,tn)(∏ n-1 i = 0 m ξi)-1 converges in L2.For branching random walks in varying environments,we have similar results.
作者 方亮 胡晓予
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2011年第3期288-297,共10页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金(10871200)资助
关键词 分枝过程 随机环境中的分枝随机游动 依赖于代的分枝随机游动 branching process branching random walks in random environments branching random walks in varying environments
  • 相关文献

参考文献12

  • 1Joffe A, Moncayo A.R. Random variables, trees and branching process random walks[J]. Advan Math, 1973, 10: 401- 416.
  • 2Stam A J. On a conjecture by Harris[J]. Z Wahrscheinlichkeitsth, 1965, 5: 202-206.
  • 3Gnedenko V B, Kolmogorov A N. Limit Distirbution for sums of independent Random Variables[ M ]. Addison-Wesley, Reading, Mass, 1954:210.
  • 4Klebaner C F. Branching random walk in varying environments[ J]. Adv Appl Prob,1982, 14: 359-367.
  • 5Dean H Fearn. Galton-Walson processes with generation dependent[ C ]//Proc 6th Berkeley Symp Math Statist. Prob4. 1972:158-172.
  • 6Harris T E. The theorem of branching processes[ M ]. Berlin: Springer-Verlag, 1963.
  • 7D' Souza J C, Biggins J D. The supercritical galton-walson process in varying environments[ J]. Stochastic Processes and its Application, 1992, 42 : 39- 47.
  • 8Krishna B, Athreya, Samuel Karlin. Branching processes with random environment I: Extinction probabilities[ J]. Ann Math Stat, 1971, 42(6) : 1843-1858.
  • 9Athreya K B. Ney P E. Branching processes[ M]. Berlin, Heideberg, New York:Spring-Verag, 1972.
  • 10Norman Kaplan. Branching random Walks I[ J]. Stochastic Process and their Application, 1976, 4: 1-13.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部