摘要
假设{Zn;n=0,1,2,…}是一个随机环境中的分枝随机游动(即质点在产生后代的过程中,还作直线上随机游动),ξ={ξ0,ξ1,ξ2,…}为环境过程.记Z(n,x)为落在区间(-∞,x]中的第n代质点的个数,fξn(s)=∑∞j=0pξn(j)sj为第n代个体的生成函数,mξn=f′ξn(1).证明了在特定条件下,存在随机序列{tn}使得Z(n,tn)(∏n-1i=0mξi)-1均方收敛到一个随机变量.对于依赖于代的分枝随机游动,仍有类似的结论。
Suppose {Zn;n = 0,1,2,…} is a branching random walk in the random environment,and ξ = {ξ0,ξ1,ξ2,…} is the environment process.Let Z(n,x) be the number of the nth generation located in the interval(-∞,x],fξn(s) = ∑ ∞ j = 0 pξn(j) sj be the generating function of the distribution of the particle in the nth generation,and mξn = f ξ'n(1).We show that under the specific conditions,there exists a sequence of random variables {tn},so that Z(n,tn)(∏ n-1 i = 0 m ξi)-1 converges in L2.For branching random walks in varying environments,we have similar results.
出处
《中国科学院研究生院学报》
CAS
CSCD
北大核心
2011年第3期288-297,共10页
Journal of the Graduate School of the Chinese Academy of Sciences
基金
国家自然科学基金(10871200)资助
关键词
分枝过程
随机环境中的分枝随机游动
依赖于代的分枝随机游动
branching process
branching random walks in random environments
branching random walks in varying environments