摘要
对于非严格重复线性时变连续系统,初始迭代条件和参考轨迹在一定带宽范围内都是迭代变化的.提出一种非严格的迭代学习方法来控制跟踪整流.通过该方法所获得的控制器,能保证闭环系统的所有信号是全局有界的,能够使超出初始时间间隔的输出跟踪误差收敛到一个小的残差集内,该残差集大小取决于输入矩阵的估测误差.尤其是当输入矩阵已知的情况下,能够让超出的初始时间间隔输出跟踪误差趋近于零.
For non-strictly repetitive linear time-variant continuous systems,both the iterative initial conditions and the reference trajectories are iteration-varying within a bound.We present a kind of iterative learning controller with a rectifying action to the non-strictly repetitive tracking.The proposed controller can make the output tracking error beyond the initial time interval converge to a residual set whose size depends on the estimation error of input matrix.Especially,when the accurate input matrix is known,the output tracking error beyond the initial time interval can approach zero.
出处
《中国科学院研究生院学报》
CAS
CSCD
北大核心
2011年第3期366-374,共9页
Journal of the Graduate School of the Chinese Academy of Sciences
基金
Supported by the National Natural Science Foundation of China(60874116)
Natural Science Foundation of Hainan province(610227)
关键词
线性时变系统
变初始条件
迭代变期望轨迹
迭代学习控制
iteration-linear time-variant continuous systems
varying initial conditions
iteration-varying reference trajectories
iterative learning control